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The global rise in the elderly population is posing challenges to healthcare 

systems due to labor shortages in caregiving facilities. This necessitates 

innovative solutions for elderly care services. Smart aging technologies such as 

robotic companions and digital home gadgets offer a solution by improving the 

elderly’s quality of life and assisting caregivers. However, limitations in data 

privacy, real-time processing, and reliability often hinder the effectiveness of 

existing technologies. Among these, privacy concerns are a major barrier to 

ensuring user trust and ethical implementation. Therefore, this study proposes a 

more effective approach for smart aging that prioritizes data privacy and real-

time processing capability. Our main goal is to support the elderly’s well-being 

and assist their caregivers. To achieve this, we developed an activity monitoring 

and behavior analysis system for the elderly and designed a user-friendly 

interface for caregivers. 

 

The proposed methodology, with the primary objective of implementing a real-

time privacy-preserving activity monitoring system for elderly people, involves 

a visual monitoring process utilizing stereo depth cameras to continuously 

analyze the activities of the residents. Data were collected from real-world 

environments with the participation of elderly individuals. This study focuses on 

analyzing common daily actions of the elderly, including sitting, standing, lying, 

and using a wheelchair. Given the vulnerability of elderly individuals, we also 

focus on transition states (in-between actions such as changing from sitting to 

standing), which are crucial for assessing balance issues and potential risks. 

 

This thesis is organized as follows: 

 

In Chapter 1, the overall research background and the objective of the study are 

established. This thesis presents a deep learning-based monitoring system for the 

elderly that can recognize not only the common daily activities of the elderly but 

also the transition states between actions which is an important factor for 

reducing the risk of indoor incidents. This chapter addresses the overall 

introduction of this thesis. The objectives, contributions, and overall flow of this 

thesis are also described in this chapter. 

 

In Chapter 2, the relevant research areas are delved deeper into, reviewing 

existing smart aging technologies, exploring indoor elderly monitoring systems 

utilizing sensors and cameras, and examining prior research on elderly action 

recognition. Additionally, the chapter presents a comparative analysis of various 

action recognition techniques, including transition-aware action recognition, 

action recognition based on the Hidden Markov Model (HMM), and Deep 

Learning (DL)-based approaches. 
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In Chapter 3, two key aspects are encompassed: depth data acquisition and 

subsequent processing. The first section details how real-world data was 

collected from the elderly care facilities. The focus lies on capturing the daily 

routines of elderly participants while ensuring their privacy. The second section 

elaborates on the steps to refine the raw depth data captured by the stereo depth 

cameras. This process aims to enhance data quality by addressing noise, 

inconsistencies, and missing values within the data.  

 

In Chapter 4, the essential role of person detection in elderly monitoring 

systems is explored using computer vision techniques. It delves into the You 

Only Look Once (YOLOv5) detector and compares the model’s performance. 

The evaluation process defines various metrics and utilizes two data-splitting 

strategies to identify the effectiveness of the YOLOv5 model for our specific 

application. 

 

In Chapter 5, the proposed models for elderly action recognition are explored. It 

explains how these models utilize spatial and temporal features extracted from 

the person’s movement with three main approaches. In the first approach, 

motion appearance and history features are extracted from the depth image 

sequences and represented using a Histogram of Oriented Gradients (HOG) 

descriptor. These HOG feature vectors are classified using single Machine 

Learning (ML) algorithms and those combined with the stochastic Hidden 

Markov Model (HMM) in the recognition process. In the second approach, 

straightforward temporal-dependent features are extracted from the sequence of 

segmented person masks, and a Support Vector Machine (SVM) is used for 

classification. In the third approach, spatiotemporal features are extracted 

automatically using Convolutional Recurrent Neural Networks (CRNN). The 

system achieved robust transition state recognition by leveraging the motion 

information derived from body posture changes (inspired by the second 

approach) with CRNN.  

 

In Chapter 6, the proposed research is summarized, the overall effectiveness of 

the proposed system is described, and finally concluded by outlining its potential 

contributions and future directions. 

 

Keywords: smart aging, elderly care, elderly activity monitoring, stereo depth cameras, person 

detection, real-time elderly action recognition, transition state recognition, artificial 

intelligence, computer vision, deep learning, machine learning, motion information, temporal-

dependent features, spatiotemporal features, YOLOv5, hidden markov model, histogram of 

oriented gradients, support vector machine, GUI 
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Chapter 1 
 
 
 
Overall Introduction 
 
 
 

 
This thesis presents a deep learning-based video monitoring system for 

the elderly that can recognize not only the common daily activities of 

the elderly but also the transition states between actions which is an 

important factor for reducing the risk of indoor accidents. This proposed 

system analyzes the motion patterns of the human region extracted from 

the depth camera images and is intended for implementing the user-

demanded vision-based elderly monitoring system. This chapter 

addresses the overall introduction of this thesis. The objectives, 

contributions, and overall flow of this thesis are also described in this 

chapter. 
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1.1 Research Background 

 Nowadays, the increase in the aging population has become a huge global issue for 

human society. The global population aged 65 and above is rapidly growing in many of the 

developed and developing countries around the world, which places significant demand for 

healthcare and nursing care services [1]. The improved modern medical technology is one of 

the key drivers for increasing the life expectancy at birth, and improved survival rates among 

the elderly. According to the 2019 Revision of the World Population Prospects which has been 

published by the United Nations [2], one in six people (16%) will be over age 65 by 2050, up 

from one in eleven (9%) in 2019. Therefore, the modern innovation technology for creating a 

more age-friendly world becomes an urgent and high-demand requirement. In addition, the 

global community should take specific actions to improve the health and well-being of the 

elderly and to develop supportive environments with independent living styles. 

With the current rates of aging in the population, the support in health care services for 

the elderly is an increasing concern. Declining mobility and health are common issues 

associated with aging that significantly affect the quality of life and independence of the elderly 

[3]. Due to low fertility rates in recent decades, most of the elderly have only a couple of family 

members and usually plan to go to the elderly care centers or independently live alone. 

Consequently, the elder care facilities play a vital role in ensuring the safety of the elderly in 

case the elderly reach a situation in which they cannot live on their own. Luckily, due to the 

numerous assistive technologies, now we can implement various kinds of healthcare systems 

for supporting the elderly associated with growing older. 

One promising solution involves understanding the well-being of the elderly through 

the concept of ‘smart aging’ [4]. Smart aging can be defined as an innovative approach that 

enables the elderly population to live freely, securely, comfortably, healthily, and happily [5]. 

Although there are various ways to facilitate smart aging for the elderly, the utilization of 

modern technologies has increased in recent years, by leveraging advanced software and 

hardware technologies. Assisted living [6, 7] and healthcare monitoring [8] are among the 

approaches that are aimed at helping elderly individuals with independent living and smarter 

aging.  

Some of the research concepts in the context of smart aging for elderly monitoring are 

shown in Fig. 1.1. There are two main approaches for smart elderly monitoring technologies: 

sensor-based and camera-based methods ranging from facial recognition to location tracking. 

However, existing sensor-based technologies often rely on physical sensors that need to be 
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placed in the environment or require intrusive wearing, which can be inconvenient and limit 

the mobility of elderly individuals. On the other hand, privacy concerns also arise with certain 

camera-based monitoring methods to ensure user trust and ethical implementation. Hence, this 

study proposes a more effective approach to smart aging through indoor activity monitoring of 

the elderly by pushing the boundaries of these existing limitations. 

 

Fig. 1.1. Research Concepts of Smart Elderly Monitoring 

 

This study aims to develop an activity monitoring system for the elderly in indoor 

settings using stereo depth cameras. To achieve robust performance, modern technologies such 

as Deep Learning (DL), Machine Learning (ML), and Artificial Intelligence (AI), a cornerstone 

of the Fourth Industrial Revolution (4IR or Industry 4.0), are applied in this study. Notably, the 

DL approach is particularly well-suited to this study in comparison with the Internet of Things 

(IoT). DL architectures, with their multi-layered structure, are adept at handling complex 

relationships within the raw data, leading to more accurate recognition of the intended actions. 

On the other hand, IoT generally focuses on connecting devices and sensors for collecting and 

sharing data. Although depth cameras can be integrated into IoT systems, real-time action 

recognition often requires additional processing and analysis. Therefore, the proposed system 

offers several advantages over other existing traditional methods. It eliminates the need for 

wearable devices or sensors that may interfere with the elderly by allowing easy camera 

installation within the room, which is cost-effective, can achieve robust performance, and 

preserves privacy by utilizing depth data rather than color images. 

To ensure the practicality of the system, data were collected from real-world 

environments, including a care center and hospital, with the participation of elderly individuals. 
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This study focuses on recognizing the seven common daily indoor actions such as seated in a 

wheelchair, standing, sitting on the bed, lying on the bed, and the transition states between 

these actions, being outside the room and receiving assistance. Among them, transition states 

can denote the changes in body position and movement from one specific action to another 

(e.g., changing from sitting to standing), and are crucial elements for the daily monitoring 

routines of the elderly. During transition states, elderly individuals may experience feelings of 

exhaustion due to the need for body balance or may be concerned about falling due to weakened 

physical conditions as illustrated in Fig. 1.2. Hence, recognizing the transition states is 

important for the elderly health monitoring and can address the challenges associated with 

impaired mobility and balance, thereby promoting the overall safety of elderly individuals. 

 

Fig. 1.2. Illustration of Transition States between Sitting and Standing Actions 

 

In caregiving and assisting facilities, the elderly typically rely on the caregivers for 

continuous support and monitoring. However, caregivers are unable to provide constant 

monitoring because there is an unbalance between the ratio of the elderly and caregivers. The 

proposed system aims to reduce the workload of caregivers while supporting the automatic 

monitoring of the elderly’s well-being. Therefore, prioritizing the interaction between the 

system and caregivers is more important than interaction with the elderly. To achieve this, a 

user-friendly Graphical User Interface (GUI) was designed and implemented in the proposed 

system to assist caregivers and provide a convenient environment for the elderly and seniors. 

The results obtained from the analysis of the proposed model will be described on the GUI and 

can be shared with caregivers, family members, and healthcare providers, enabling 

comprehensive monitoring and potentially leading to early interventions.  

Exhausted! Worrying!

Standing Transition Sitting Transition Standing
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1.2 Research Objectives 

The main objective of this study is to support the well-being of the elderly and assist 

the caregivers in reducing both the mental and physical load. To achieve this, this study 

developed an activity monitoring and behavior analysis system for the elderly by utilizing 

stereo depth cameras and designed a user-friendly interface for the caregivers. 

Along with the implementation of this research, the following cutting-edge 

technologies have been applied: 

(1) AI and ML techniques emphasizing DL algorithms, 

(2) Advanced Digital Image Processing (DIP) and Computer Vision (CV) techniques, 

(3) Hidden Markov Models (HMM) and sequential analysis. 

Moreover, the reliability of this research is validated by using self-collected real-life 

data in real-world scenarios. 

1.3 Main Contributions 

The main contributions of the study are as follows: 

(1) Depth cameras for elderly monitoring: Explore the application of stereo depth 

cameras for privacy-preserving, real-time indoor action recognition for the elderly 

in the environment. 

(2) Transition state recognition: Identify transition states from primitive actions of 

elderly residents using spatiotemporal features. 

(3) Hybrid HMM combinations: Assess how well combining HMM and ML models 

classify actions in real time for continuous monitoring. 

(4) Convolutional Recurrent Neural Network (CRNN) integration: Leverage 

motion information derived from the body posture changes with CRNN, achieving 

robust transition state recognition. 

(5) Validate reliability: Evaluate system reliability using real-world elderly datasets. 

1.4 Thesis Organization Structure 

The overall system flow is shown in Fig. 1.3. There are three main parts included in 

the proposed system: depth data acquisition and processing, person detection, and action 

recognition. The data are collected using stereo depth cameras and the results are displayed 

in the user interface. This thesis is organized according to the overall system flow. 
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Fig. 1.3. Overall System Flow 

 

Firstly, Chapter 1 establishes the overall research background and the objective of 

the study. Then, Chapter 2 delves deeper into relevant research areas, reviewing existing 

smart aging technologies, exploring indoor elderly monitoring systems utilizing various 

sensors and cameras, and examining prior research on elderly action recognition. After that, 

Chapter 3 encompasses two key aspects: depth data acquisition and subsequent processing 

which are crucial for analyzing the activities of elderly individuals. The first sub-section 

presented detailed information on how real-world data was collected from the elderly care 

facilities. The second sub-section elaborates on the steps taken to refine the raw depth data 

captured by the depth cameras. Subsequently, Chapter 4 explores the essential role of person 

detection in elderly monitoring systems using computer vision techniques. It delves into the 

You Only Look Once (YOLO) detector and compares the model’s performance. Then, 

Chapter 5 explores the proposed models for elderly action recognition and explains how 

these models utilize spatial and temporal features extracted from the person’s movement with 

three main approaches. Finally, Chapter 6 summarizes the research, discusses the overall 

effectiveness and limitations of the proposed system, and concludes by outlining its potential 

contributions and future directions.  
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Chapter 2 

 
 
 

Literature Review 

 
 
 

 

This chapter conducts a comprehensive literature review of elderly 

health supporting technologies. It explores existing smart aging 

technologies, delves into indoor elderly monitoring systems using 

various sensors and cameras, and examines prior research on elderly 

action recognition. Additionally, the chapter presents a comparative 

analysis of various action recognition techniques, including transition-

aware action recognition (Section 2.2.1), action recognition based on 

the Hidden Markov Model (HMM) (Section 2.2.2), and Deep Learning 

(DL)-based approaches (Section 2.2.3). 
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2.1 Elderly Health Supporting Technologies 

As the population ages, there is a growing need for technologies that can support 

independent living for older adults [9]. Many modern assistive technologies, such as ambient 

assisted living systems and smart homes, incorporate action recognition to improve elderly 

care [10]. Action recognition allows these systems to monitor and analyze the daily activities 

of elderly individuals, enabling features such as prompting and warning systems, health 

monitoring, and support for people with dementia [11]. Researchers in industry and academia 

have built numerous systems for the elderly using wearable sensors (accelerometers and 

gyroscopic sensors) [12], ambient sensors (motion, radar, object pressure, and floor vibration 

sensors) [13], and vision sensors [14]. The proposed system relies on vision sensors 

(cameras) rather than wearable sensors to maximize the comfort of those living in the care 

center. The following subsection explores recent trends in smart aging technologies, with a 

particular focus on how these trends are utilized in vision-based action recognition systems 

for indoor elderly monitoring. 

 

2.1.1 Smart Aging Technologies 

Smart aging technologies offer a wide range of innovative solutions to support elderly 

people in their daily lives and promote aging. These solutions encompass smart home 

products, gadgets, wearable devices, remote monitoring systems, and Internet of Things 

(IoT)-enabled healthcare applications [15-17]. These include functions such as fall detection, 

electronic fences, temperature monitoring, and sleep monitoring. For example, a smart 

wearable device based on IoT has been designed to monitor physiological parameters in real 

time and provide remote access to the elderly’s health status [18]. On the other hand, public 

entities deploy and operate smart mobility technologies to improve mobility and 

independence for older adults, while reducing operating costs [19]. Similarly, smart grid 

technology has been developed to provide useful information on the activities of daily living 

and monitor the short and long-term health of elderly individuals [20]. Owing to 

advancements in technology, Artificial Intelligence (AI) has played a crucial role in 

developing smart aging systems to personalize healthcare for the elderly. For instance, AI 

tools such as Machine Learning (ML) and DL models are used to develop solutions that 

improve the quality of life and autonomy and reduce caregiver burden [21-24]. 

However, challenges arise in the implementation of personalized healthcare using 

smart aging technologies which include the potential disruption of existing care systems, 
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technological literacy gaps, and privacy concerns due to constant monitoring [25-27]. 

Moreover, the security vulnerabilities in IoT systems [28] and ethical considerations in AI 

must be addressed carefully. For instance, co-adaptation between technology and the elderly 

is crucial for user satisfaction and long-term adoption [29]. Therefore, a person-centered 

approach and sufficient governance are necessary to ensure generalizability, transparency, 

and effectiveness in implementing smart aging technologies. 

Overall, smart aging technologies offer promising solutions for aging and enhancing 

the well-being of the elderly. Addressing security vulnerabilities, ethical considerations, and 

implementation challenges is crucial for successful adoption and impact. The future of smart 

aging technologies is bright, with the potential to revolutionize the way we care for older 

adults. However, it is important to ensure that these technologies are developed and used in 

a way that is ethical and respectful of the needs and preferences of older adults. 

Motivated by this, this study addresses data privacy concerns in smart aging through 

indoor elderly activity monitoring using stereo depth cameras. This practical system, 

developed and evaluated for easy adoption in real-world environments, utilizes data collected 

from a care center and hospital with the participation of elderly individuals. As an ethical 

consideration, a waiver of written informed consent was obtained from all participants, and 

the data acquisition protocol received ethical approval for the experiment. Some related 

systems for indoor elderly activity monitoring are explained in the next subsection. 

2.1.2 Indoor Elderly Monitoring Systems 

Elderly monitoring refers to an indoor system designed to process data related to the 

daily activities of the elderly, collected from sensors or cameras. It provides information 

concerning health conditions and behavioral status to aid in understanding the well-being of 

the elderly. A recent study introduced a system for activity monitoring that utilized wearable 

sensor data and environment-independent fingerprints generated from Wi-Fi channel state 

information using a hybrid DL model [30]. This system aimed to enhance the independence 

of the elderly and visually impaired individuals, achieving an accuracy of 99% in experiments 

conducted on two public datasets featuring various activities. However, sensor-based systems 

sometimes face challenges, including noisy data affecting accuracy, unreliable readings 

owing to sensor placements, and the need for sophisticated data collection and processing. 

Additionally, they often require frequent charging, causing inconvenience for the elderly who 

may forget to use them. 
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In contrast, camera-based systems are particularly attractive due to their non-invasive 

nature, aligning well with the principles of smart aging to promote user comfort and freedom 

for older adults. Cameras offer a broader field of view, enabling monitoring of multiple 

activities using one device within a room or area. Importantly, they can serve multiple 

purposes beyond action recognition, including fall detection, medication monitoring, and 

remote communication. However, they also present challenges such as privacy concerns and 

limitations in environments with poor lighting or clutter. 

Depth cameras offer several distinct advantages over traditional RGB cameras. 

Whereas regular cameras capture 2D information, depth cameras provide 3D depth data, 

revealing the distance between the objects and the camera sensor [31]. Thus, depth data offers 

privacy advantages because they capture distance information in the form of a 3D point cloud, 

without recording facial details or other identifiable features. Moreover, depth cameras 

perform well under low-light conditions, where regular cameras struggle, making them 

suitable for monitoring various indoor environments with limited lighting. Depth cameras do 

have limitations such as limited sensing distance and low resolution [32]. Despite these 

limitations, advancements in the technology originally developed for gaming, automotive, 

and medical fields have led to their increasing application in elderly care and smart homes. 

Several studies have explored the use of depth cameras to monitor the elderly by 

analyzing their activity patterns [33-36]. For example, a non-invasive sleep monitoring 

system was developed using a 3D depth camera (Microsoft Kinect II) [33] with the aim of 

long-term monitoring of sleep behaviors in seniors. Another study utilized depth-video-based 

methods for human activity recognition in indoor environments [34] and achieved efficient 

and robust results by experimenting with three publicly available depth datasets. In addition, 

a framework for fall detection that utilizes both accelerometer data and depth maps from a 

Kinect sensor was proposed [35], demonstrating high performance in differentiating falls 

from other daily activities. The experiment was conducted on a public fall detection dataset 

and achieved a high performance. Furthermore, a solution was proposed that solely utilizes 

depth information from RGB plus depth (RGBD) cameras to monitor the elderly within 

indoor living spaces [36], enabling remote monitoring by family members and caregivers to 

understand their behavior and take appropriate action when needed. 

Through a review of previous studies, it is evident that various categories are included 

for elderly monitoring purposes, such as sleep monitoring, fall detection, remote monitoring, 

and activity recognition. However, many of these systems rely on public datasets or 
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performance datasets demonstrated by young people rather than testing actual elderly data. 

In addition, the camera view in most datasets is typically located in front of a person, which 

may be uncomfortable or impractical in real-world scenarios. By leveraging the advantages 

of depth cameras and collecting real-world data from elderly residents in care centers, this 

study proposes a system for 24-hour monitoring and real-time action recognition processing, 

addressing limitations identified in previous research. 

2.1.3 Vision Sensor-based Action Recognition Systems 

Building on the advantages of camera-based systems, vision sensor-based action 

recognition utilizes computer vision and image processing techniques to analyze video 

sequences and understand a subject's activities. This technology has become a major area of 

research in recent years. For instance, the following studies were conducted on human action 

recognition using various types of vision sensors. The authors in [14] designed a monitoring 

and action recognition system by exploiting modern image processing techniques and RGB 

cameras. They trained the detection model in their system using the faster Regions with 

Convolutional Neural Network features (R-CNN) by focusing on the ‘person’ class to locate 

the person. Again, the action recognition model was trained by the integration of two-stream 

inflated 3D ConvNet and deep human action recognition models. The authors introduced a 

new dataset with a large number of samples to balance the action samples and designed a 

client-side, web-app interface for monitoring people. Another study [37] emphasized a 

method for real-time human action classification using a single RGB camera, which can also 

be integrated into a mobile robot platform. To extract skeletal joints from RGB data, the 

authors combined OpenPose and 3D-baseline libraries and then used a CNN to identify the 

activities. 

As more and more technologies emerge to assist older adults, researchers should 

consider the effect of health-related technologies on the people being monitored. Most people 

want to keep their health information private, and they also worry about how such 

information could be used against them. According to surveys collected by the authors in 

[38], older adults have positive opinions of assistive technologies but rarely accept systems 

that use cameras because of privacy concerns. To overcome this attitude, the use of depth 

cameras became more common for their advantages from a privacy perspective. By 

measuring distances between the camera and objects, depth data can be used for action 

recognition without using images that could be used to identify individuals. Furthermore, 
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depth cameras can be used at night without needing additional light. By using color with 

depth data, some authors have proposed a cloud-based approach [39] that recognizes human 

activities without compromising privacy. In this approach, researchers collect one motion-

history image generated from color data, three depth-motion maps extracted from depth data, 

and then use deep Convolutional Neural Network (CNN) for the recognition process.  

Likewise, we also used a depth camera in our previous work [40], which introduced 

a real-time action recognition system that helps prevent accidents and supports the well-being 

of residents in care centers. In [40], we extracted both appearance-based depth features and 

distance-based features, extending the system described in [41] to recognize actions using 

the automatic rounding method. As another approach, [42] proposed a skeleton-based system 

for recognizing human activities for monitoring the elderly. They used Minkowski and cosine 

distances between 3D joint features for the recognition process, by characterizing the 

spatiotemporal components of a human activity sequence. The authors of [43] used 3D point 

clouds for action recognition by only processing depth maps. They developed a descriptor 

based on the histogram of oriented principal components for 3D action recognition. The 

researchers used this descriptor to determine the spatiotemporal key points in 3D point cloud 

sequences. In contrast to previous studies, our method relies on the depth map features of a 

stereo depth camera, and actions are recognized based on these depth images. 

2.2 Action Recognition for Elderly Activity Monitoring 

 Action recognition for elderly activity monitoring involves identifying both primitive 

actions (e.g., sitting, standing, seated in the wheelchair, and lying down) and transition states 

that might indicate potential risks. These transition states could include falls, abnormal 

activities, or attempts to perform actions that could lead to harm. The following subsections 

explore different approaches to recognizing actions and transitions using vision sensor data. 

2.2.1 Transition-aware Action Recognition 

Transitions between actions are often disregarded in traditional action recognition due 

to their short duration compared with full actions. However, failing to account for transitions 

can negatively impact the performance of recognition systems [44]. Hence, the real-time 

detection of transitions between actions remains a challenging but valuable area of research, 

particularly for continuous monitoring of human daily activities [45, 46].  
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Several studies have explored various approaches to transition-aware action 

recognition, demonstrating its effectiveness in real-world scenarios. These approaches often 

leverage sensor data or video features to identify transition states. 

For instance, real-time ML-based methods have been employed for automatic 

segmentation and recognition of continuous human daily action by integrating change point 

detection algorithms with smart home action recognition [47, 48]. In another study, a 

transition-aware context network was proposed [49] to distinguish transition states. The 

network comprised two components: a temporal context detector to extract long-term context 

information and a transition-aware classifier to classify actions and transition states. Utilizing 

spatiotemporal features, the network achieved a competitive performance and significantly 

outperformed state-of-the-art methods on the untrimmed UCF101 dataset. Moreover, CNN 

models were utilized to recognize transition actions, and the effectiveness of the approach 

was demonstrated through experiments with fuzzy logic [50]. 

Other innovative approaches focus on incorporating realistic human motion into the 

transition recognition process [51, 52]. For example, one approach emphasizes the 

importance of natural leg movements during transitions [51]. Another study proposed an 

algorithm based on Standard Deviation Trend Analysis (STD-TA) of sensor data for 

recognizing transition states [52]. Additionally, smartphone-based systems have been 

developed for transition recognition [53]. 

The related studies mentioned above share a common approach of utilizing time-

series or spatiotemporal features to identify transition states from other actions, although they 

employ different classifier models. Building on these concepts, the system in this study 

utilizes spatiotemporal features extracted from the body movements of the elderly to 

distinguish between transition states and primitive actions as well as among specific actions. 

2.2.2 HMM-based Action Recognition 

HMMs are a type of statistical model that extends the Markov process by including 

hidden states along with visible states. They are widely used in various detection and 

recognition systems, particularly for recognizing activities or sequences of events [54].  

When applied to action recognition using sensor data, HMMs offer a powerful 

approach for modeling sequential activity patterns. For instance, the authors in [55] proposed 

a two-stage continuous HMM approach to recognizing human activities from temporal 

streams of sensory data (collected by accelerometer and gyroscope on a smartphone). The 
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first level of HMM separated stationary and moving activities, while the second level 

separated data into their corresponding activity classes. Likewise, other research [56] has 

employed a two-layer HMM to build an activity recognition model using sensor data, but 

that differs from the model in the work of [55]. In the first layer, location information 

obtained from the sensors was used to classify activity groups; in the second layer, individual 

activities in each group were classified. Then, they applied the Viterbi algorithm to their 

HMM to infer the activities. The activity recognition model in [57] established a Hierarchical 

HMM to detect ongoing activity by monitoring a live stream of sensor events. Their method 

also included two phases, but only the first phase used HMM. In this method, data streams 

were segmented according to the start and end points of activity patterns. 

For systems relying on vision sensor data, the studies in [58, 59] proposed HMM-

based automatic fall detection systems with image processing techniques by utilizing RGB 

and RGB-D cameras, respectively. In [60], HMM was used as a decision-making process for 

differentiating abnormal (falling) from normal sequential states for a given person. The 

system made this decision by observing the six possible feature values which were defined 

according to the distance between the centroid of the person’s silhouette and the associated 

virtual ground point, the shape’s area, and the person’s aspect ratio. The HMM model was 

then developed by defining feature thresholds and calculating emission probabilities. On the 

other hand, [61] created an HMM model to detect and distinguish falling events from the 

other eight activities of the person. The observation symbols of their model were the vertical 

position of the center of mass, the vertical speed, and the standard deviation of all the points 

belonging to the person. In another study [62], a continuous HMM was used for human action 

recognition from the image data. The authors explicitly modeled the HMM using a temporal 

correlation between human postures, described using a Histogram of Oriented Gradients 

(HOG) for shape encoding, and a Histogram of Optical Flow (HOF) for motion encoding. 

Their HMM made continuous observations, modeling the probability distribution in each 

state by a mixture of Gaussians. Their experimental results showed that the continuous HMM 

outperformed recognition systems using a Support Vector Machine (SVM) based on 

spatiotemporal interest points. In another study [61], an HMM was developed for a human 

activity recognition system in which the discrete symbols for HMM were generated by 

mapping into code words from estimated body joint-angle features. The HMM was trained 

for each activity, and the activities were then recognized using the trained models. Meanwhile, 

the authors in [62] and [63] had driven the development of Fisherposes for view-invariant 
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action recognition using 3D skeleton data collected using a Kinect sensor. In [62], an HMM 

was used to characterize the temporal transition between body states in each action, and in 

[63], an HMM was used to classify actions into an input series of poses.  

In the current work, we developed an HMM model for elderly action recognition that 

uses space-time features to obtain observation symbols. Furthermore, we compared the 

results of various models which combine HMM with other ML classification models. 

 

2.2.3 DL-based Action Recognition 

Research on spatiotemporal feature extraction and action recognition has explored 

traditional methods [64, 65], which often rely on handcrafted features, and DL techniques 

[66-71]. DL models, such as CNNs and Recurrent Neural Networks (RNNs), have emerged 

as powerful tools for action recognition due to their ability to automatically learn complex 

features directly from data, reducing the need for manual feature engineering. CNNs are 

adept at capturing spatial features from video frames, while RNNs excel at managing 

temporal dependencies by processing feature sequences over time. Integrating CNNs and 

RNNs for spatiotemporal feature extraction offers advantages in terms of accuracy and 

efficiency, as proven in existing literature. Therefore, the proposed system uses CNNs to 

encode spatial features and RNNs to decode temporal dependencies. These components were 

then fused and built into a single-model hybrid architecture for action recognition. 

Several studies have investigated the application of CNNs and RNNs in action 

recognition. For example, one approach proposed recognizing human actions from videos 

using a combination of deep CNN and multi-layered RNN, specifically Long Short-Term 

Memory (LSTM) units [66]. CNNs extract features from individual video frames, whereas 

LSTMs are a type of RNN that can effectively capture long-term dependencies within 

sequences, making them suitable for processing the sequence of extracted features to capture 

temporal information. In their approach, different GoogLeNet architectures were used to 

extract various features from images. The extracted features were then converted into 

sequences and fed into multi-layered LSTMs. Finally, a softmax regression classifier 

categorizes the videos based on processed features. Notably, the network architecture utilizes 

both residual and inception blocks to handle convergence during the training process. 

Experiments showed that this approach, particularly the combination of multi-layered 

LSTMs with the Inception_Residual model, improved the evaluation performance. 

Another study proposed a novel architecture using CNNs and RNNs for action 

recognition [67]. The approach incorporated separate layers to capture spatial and temporal 
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information. In the first stage, that is, feature extraction, they utilized an improved p-non-

local operation within a deep CNN. This operation effectively captures long-range 

dependencies within video data. In the second stage, class prediction, they introduced a novel 

technique called fusion keyless attention. This technique, combined with a forward and 

backward bidirectional LSTM network, allows the model to learn the sequential nature of the 

data, that is, how actions unfold over time. Their experiments on two datasets demonstrated 

that this model outperformed the traditional models.  

To improve action recognition performance, researchers have explored transfer 

learning by leveraging pre-trained models that have already learned powerful feature 

representations from large datasets [68]. Their approach utilized two separate CNNs, one for 

analyzing spatial information from RGB images and another for capturing motion 

information through optical flow. Both CNNs leveraged pre-trained models for efficient 

feature extraction. They further investigated combining the spatial and temporal features 

extracted by separate CNNs. This involved employing various CNN-RNN architectures, 

where CNNs (ResNet101, GoogleNet, and VGG16) act as encoders to extract features and 

RNN variants (LSTM, Bi-directional LSTM, Gated Recurrent Unit (GRU), and Bi-

directional GRU) act as decoders to handle the sequential nature of video data. The 

researchers proposed six additional aggregation networks after generating the individual 

models (one motion CNN model, three spatial CNN models, and twelve CNN-RNN fusion 

models). These networks used a technique called Average Fusion to combine the outputs 

from the spatial and temporal CNNs, as well as CNN-RNNs. This was aimed at further 

improving the overall action recognition performance. 

Another approach utilized a Deep Bidirectional LSTM (DB-LSTM) network for 

action recognition in long videos [69]. The method combines a CNN for feature extraction 

and a DB-LSTM to handle the sequential nature of video data. To reduce computational 

complexity and capture representative motion patterns, the approach extracts spatial features 

from every sixth frame of the video using a pre-trained CNN model (AlexNet). A deep DB-

LSTM network then processes the extracted features. By stacking multiple layers in both the 

forward and backward directions, the DB-LSTM learns long-term dependencies within the 

video sequence, making it suitable for analyzing longer videos. Experiments showed that this 

approach achieved state-of-the-art performance on the UCF-101, HMDB51, and YouTube 

action video datasets, outperforming other recent techniques. 
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Recent research has addressed the limitations of DL-based action recognition, 

particularly regarding computational efficiency, scalability, and accuracy for real-time 

applications. One promising approach involves lightweight architectures and transformer 

neural networks. Transformer neural networks, a relatively new DL architecture, can process 

sequences directly, without relying on recurrent connections, potentially reducing 

computational complexity. Additionally, they can effectively capture long-range 

dependencies within video data, potentially improving recognition accuracy. These 

techniques aim to address challenges such as high computational demands by offering 

reduced model size and faster processing. For example, a recent study proposed Vision and 

Recurrent Transformer Neural Networks (ViT-ReT) for human action recognition in videos 

[70]. The framework combined a Vision Transformer (ViT) for efficient feature extraction 

and a Recurrent Transformer (ReT) to model the temporal information within a video 

sequence. Researchers compared ViT-ReT with traditional CNN and RNN-based approaches 

on several benchmark datasets. Their findings demonstrated that ViT-ReT achieved a 

significant speedup compared with the baseline method (ResNet50-LSTM) while 

maintaining comparable accuracy. Furthermore, ViT-ReT outperformed the state-of-the-art 

methods in terms of both accuracy and processing speed, making it suitable for resource-

constrained and real-time activity recognition applications. 

To address the challenges of real-time action recognition, the proposed system 

prioritizes efficiency while maintaining accuracy. While previous approaches have explored 

combining CNNs and RNNs for action recognition by adjusting parameters and scaling 

architectures, these models can be computationally expensive for real-time applications, 

especially when processing spatial features from every frame in a long video sequence. The 

proposed system aims to achieve real-time performance through two key strategies. First, the 

person in the image is segmented, and then spatial features are extracted from this segmented 

region rather than from the entire image, significantly reducing processing time. In addition, 

motion information is incorporated from two consecutive frames for the CNN to extract 

features, enhancing the model’s capability to capture motion information. Furthermore, the 

encoder-decoder architecture combining CNN and RNN leverages a lightweight network 

design inspired by previous works.  

In many cases, the results from DL models can benefit from post-processing 

techniques like majority voting and reasoning, which are crucial for handling uncertainties 
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and inconsistencies in real-world applications. These techniques can help to refine the 

predictions from DL models and improve their overall accuracy and reliability.  

Several related studies have applied majority voting decisions and conditional 

reasoning to action recognition predictions. For example, a sliding window approach was 

used in combination with majority voting on skeleton data to achieve online human action 

recognition using spatiotemporal graph CNNs [72]. In this approach, the video sequence is 

segmented into overlapping windows, predictions are made for each window. The final action 

recognition result is determined by applying a majority vote across the predictions from all 

windows. This approach demonstrates the high performance and efficiency of the majority-

voting approach. Similarly, a model was developed to predict four different actions using 

majority voting for gameplay [73]. The findings indicated that majority voting yielded more 

accurate predictions with 92.59% accuracy, exceeding the peak accuracy value of individual 

pre-trained models. Subsequently, a model blending technique [74] was developed using 

majority voting in an ensemble of DenseNet-201 and ResNet-50 for melanoma classification. 

This method displayed satisfactory results, demonstrating the influence of majority voting 

decisions.  

Regarding reasoning, one study [75] improved the performance of action recognition 

by modeling causal relationships based on preconditions and effects. The suggested cycle-

reasoning model demonstrated improved action recognition performance through efficient 

reasoning about preconditions and effects. Additionally, an action reasoning framework [76] 

that uses prior knowledge was proposed to explain the semantic-level observations of video 

state changes. The experimental results indicated an improvement in recognition using this 

reasoning approach. 

Motivated by the effectiveness of majority voting and reasoning in refining action 

recognition results, the proposed approach incorporates both techniques. Specifically, it 

utilizes majority voting to refine the prediction results and a specific type of conditional 

reasoning to address the potential over-segmentation of transition states. Unlike previous 

works that applied majority voting on individual frames, the proposed method leverages 

sequential-based majority voting decisions and reasoning to reduce over-segmentation in 

transition states. This approach aims to enhance the accuracy and robustness of the system 

for effective recognition of transition states. 
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2.3 Conclusion 

This chapter focused on a literature review of action recognition techniques for 

elderly health supporting technologies, providing a foundation for the approaches to be 

presented in the next chapters. It began by reviewing traditional methods based on HMMs 

for both vision sensor data and skeletal data. It then discussed the advantages of DL for action 

recognition, highlighting its ability to automatically learn complex features from video data. 

CNNs were identified as effective for capturing spatial features from video frames, while 

RNNs were shown to be adept at managing temporal dependencies within video sequences. 

Finally, the chapter discussed how combining deep learning models with reasoning 

techniques like majority voting and conditional reasoning can improve the robustness and 

accuracy of action recognition systems. 

Building upon this foundation, the proposed action recognition process will delve into 

the first approach: hybrid HMMs combined with ML classifiers. This will explore how 

HMMs can be integrated with various ML classifiers to leverage the strengths of both 

techniques. Then, another approach will be presented by focusing on leveraging motion 

information with Convolutional Recurrent Neural Networks (CRNNs) for action recognition. 

This will detail the architecture of our CRNN model and how it extracts motion features to 

improve recognition accuracy. 
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Chapter 3 

 
 
 

Depth Data Acquisition and Processing 

 
 
 

 

This chapter delves into the process of acquiring and processing depth 

data crucial for analyzing the daily activities of elderly individuals. It 

encompasses two key aspects: depth data acquisition and subsequent 

processing. The first section details how real-world data was collected 

from the elderly care facilities. Here, the focus lies on capturing the 

daily routines of elderly participants while ensuring their privacy. The 

second section elaborates on the steps taken to refine the raw depth data 

captured by the stereo cameras. This processing aims to enhance data 

quality by addressing inherent noise, inconsistencies, and missing 

values within the data. 
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3.1 Depth Data Acquisition 

 This section describes the process of acquiring depth data for the development of our 

system. Real-world data from an elderly care center and a hospital were utilized, focusing on 

capturing the daily activities of elderly participants. Stereo depth cameras were employed to 

ensure user privacy by solely recording depth information. Details regarding data collection 

procedures, camera settings, room environments at each location, and the specific information 

of the recorded data are provided in the following subsections. 

 

3.1.1 Data Collection Overview 

 Real-world data were collected from the actual environment of the elderly care facilities 

in Miyazaki City, Miyazaki Prefecture, Japan. To ensure user privacy, we utilized stereo depth 

cameras instead of RGB color cameras that could reveal participants’ identities. Depth images, 

which provide distance information between objects and the sensor, were used throughout the 

development process. This resilience to lighting variations ensures consistent and reliable 

action recognition, regardless of shadows or color changes. To enhance visualization for 

subsequent analysis, the retrieved depth images were colorized using the hue colorization 

method, which will be explained in Section 3.2.2. Fig. 3.1 illustrates the overview of the data 

collection process, including a sample depth image. 

 

Fig. 3.1. Overview of Data Collection Process 

Sample Depth Image *

PRIVACY 

Protection!

Stereo Depth Camera
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Hospital (Recorded with D455)

Resident 4 Resident 5 Resident 6

Resident 7 Resident 8
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3.1.2 Principle of Stereo Depth Cameras 

 Stereo depth cameras, such as the Intel RealSense D435 (baseline 50 mm) used at the 

care center and the D455 (baseline 95 mm) used at the hospital, capture depth information 

using two imagers, one for the left and right viewpoint. The distance between these imagers, 

called the baseline as shown in Fig. 3.2, determines the camera’s depth range. A larger baseline 

allows for capturing objects at greater distances. In our case, the D455 offers a range of 0.6 m 

to 6 m, while the D435 covers 0.3 m to 3 m. 

 The cameras utilize the baseline, focal length, and disparity values to calculate depth 

values for each pixel in the captured image. This information is initially stored as raw floating-

point data representing the distance from the camera to the object. For easier data handling, 

these values are then converted and saved in a Comma-Separated Value (CSV) file format, as 

shown in Fig. 3.3. 

 

Fig. 3.2. Stereo Depth Cameras used in the Proposed Study 

 

 

Fig. 3.3. Output Images from the Depth Camera and the Data Storage Format 
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3.1.3 Data Collection Protocol 

 Eight elderly residents (three from the care center and five from the hospital), each in a 

separate room, participated in our study. Detailed information is provided in Table 3.1. All 

participants were over 65 years old and diagnosed with cognitive decline or frailty. 

 To ensure informed consent, we followed ethical protocols approved by the Ethics 

Committee of the University of Miyazaki, Japan (protocol code O-0451, dated January 28, 

2019, and protocol code O-1449, dated November 20, 2023). Participants were provided with 

a thorough explanation of the study and their written consent was obtained. For data collection, 

stereo depth cameras captured depth information at a resolution of 320×180 pixels and a frame 

rate of 5fps. 

Table 3.1. Details of Data Collection Protocol 

Participants 
1) Three elderly residents from the Care Center, 

2) Five elderly residents from the Hospital 

Selection Criteria 

1) Aged older than 65 years, 

2) Diagnosed with cognitive decline or frailty, 

3) Have been informed about participation, 

4) Have voluntarily provided written consent. 

Data Information 
1) Collected depth images for continuous 24 hours, 

2) Recorded with 320×180 pixel resolution at 5fps. 

Protocol Code 
1) O-0451 on January 28, 2019 (Care Center) 

2) O-1449 on November 20, 2023 (Hospital) 

 

3.1.4 Camera Setting and Room Environment 

 Stereo depth cameras were installed in each participant’s room to capture their daily 

activities. Mini PCs processed and recorded the data, storing it on external HDDs. To prevent 

accidental interactions with the cameras, they were strategically positioned above the curtain 

beside the bed and angled downward 45° toward the bed inside the room. The distance from 

the depth camera to the bed was maintained at 2.5 meters, with the depth camera mounted 2.1 

meters above the ground.  

As shown in Fig. 3.4 and Fig. 3.5, the core camera setup was consistent across both the 

care center and hospital, with some variations in camera positions and environments reflected 

in the sample depth images included in the figures. During the recording, only depth data 

(distance information) were captured to preserve participants’ privacy, with color images 

intentionally omitted.  
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Fig. 3.4. Illustration of Room Environment at the Care Center  

 

 

Fig. 3.5. Illustration of Room Environment at the Hospital 

 

 

Depth 

Camera
Room Structure

Experiment Environment

Side View Room Structure

Depth Camera

2
.1

 m
et

er
s

45 

Bed

Depth Camera

Bed

Top View Room Structure

Bed

Depth Camera

Side View Room 

Structure

Camera

Bed

2
.1

 m
et

er
s

0 320

1
8

0

Room 1 Room 2 Room 3

R
o

o
m

 4
R

o
o

m
 5

Room 6

R
o

o
m

 6

Rooms 7, 8

R
o

o
m

 7
R

o
o

m
 8



 

25 

 

3.1.5 Recorded Data Information 

 Table 3.2 details the specific information regarding the recorded data. It is important 

to note that the data at the care center were collected in 2019, while the hospital data collection 

was conducted in 2024. 

Table 3.2. Details of Specific Data Information 

Room 

ID 

Dates (yyyy/mm/dd_hh:mm) Duration 

(hours) Start Time End Time 

C
ar

e 
C

en
te

r 

1 
2019/10/12_10:15 2019/10/13_04:14 18 

2019/10/18_11:34 2019/10/24_13:21 146 

2 2019/10/25_11:45 2019/10/28_06:53 67 

3 

2019/10/12_11:10 2019/10/13_05:10 18 

2019/10/18_11:25 2019/10/22_20:33 105 

2019/10/25_12:00 2019/10/28_07:22 68 

H
o
sp

it
al

 

4 2024/01/05_15:35 2024/01/09_13:20 94 

5 2024/01/26_14:20 2024/01/29_13:30 71 

6 2024/01/31_14:35 2024/02/07_13:15 167 

7 2024/03/25_16:10 2024/03/28_13:15 69 

8 2024/03/28_15:00 2024/04/01_13:30 94 

 

3.2 Depth Data Processing 

 This section details the processing steps applied to the raw depth data captured by the 

stereo depth cameras. The primary goal of this processing is to improve data quality by 

addressing noise, inconsistencies, and missing values. The processing pipeline involves two 

main steps: depth preprocessing and depth image colorization. The following subsections 

provide a detailed explanation of each processing step. 

 

3.2.1 Depth Preprocessing 

The raw depth data captured by the stereo depth camera exhibited inherent noise and 

inconsistencies, leading to fluctuations in the depth measurements. To address these issues and 

improve data quality, a series of preprocessing steps were applied sequentially. 
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Fig. 3.6 illustrates the overall depth preprocessing pipeline. The first step involved hole 

filling, a process that addresses gaps or missing pixel values (black pixels) in the depth image. 

The “filling-from-left” method was employed, strategically chosen because the camera’s 

reference point is the left camera and shadows often appear on the left background. This method 

fills the gaps by referencing valid depth values from the leftmost pixel column and progressing 

rightwards. 

Following hole filling, the depth image was converted into a disparity image using the 

formula in Eq. (3.1) that considers the camera’s focal length f in pixels and the baseline b 

between its imagers in meters. Disparity represents the depth information in a different format. 

Next, bilateral spatial filtering was applied to the disparity image. This filtering 

technique effectively smooths the data while preserving edges, further reducing noise and 

inconsistencies. The filtered disparity image was then converted back into depth space using 

the reciprocal of Eq. (3.1). 

Depth thresholding was then implemented to define the valid depth range within the 

captured scene. In our case, a minimum depth of 0.3 meters and a maximum depth of 6 meters 

were chosen. This range encompasses the entire room, considering the camera-to-bed distances 

of 2.5 meters. Finally, another round of hole filling was applied to the processed depth frame 

to ensure data consistency.  

 

Fig. 3.6. Depth Preprocessing Pipeline 
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=       (3.1) 

 

3.2.2 Depth Image Colorization 

Following depth processing, the resulting depth image underwent colorization to 

enhance visualization and facilitate subsequent analysis. Hue color space, known for its ability 

to represent a wide range of colors with minimal black or white extremes, was chosen for this 

process. 

As shown in Fig. 3.7, hue color space is used for the colorization process. This color 

space has six scales in both directions of RGB channels and can thus be denoted as having 

1529 discrete ranks, or approximately 10.5 bits [77]. Moreover, as one of the colors in the hue 

color space is always 255, the colorized images will not be too dark. This facilitates 
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visualization but also transforms the depth image into a format compatible with most object 

detection algorithms, which typically operate on RGB color channels. This conversion acts as 

a bridge between the depth data and object detection tools, enabling more efficient and effective 

analysis of the captured information. 

The colorization process of depth image and recovery of depth image from colorization 

is mainly described in the following subsections. 

 

Fig. 3.7. Hue Color Bar (Represented with Degree Values) 

 

3.2.2.1 Inverse Colorization 

This proposed system employs a technique called inverse colorization for depth image 

colorization. Here, “inverse” refers to the use of disparity values, which are the reciprocals of 

depth values, for the colorization process instead of the original depth values themselves. Eq. 

(3.2) to Eq. (3.6) from the reference paper [77] are utilized for this inverse colorization. These 

equations involve parameters; d (depth value), disp (disparity value), dmin and dmax (manually 

chosen minimum and maximum depth values), and pr, pg, and pb (colorized pixel values). Fig. 

3.8 showcases a sample image generated through this hue-based inverse colorization process, 

depicting an elderly person sitting on a bed. 
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Fig. 3.8. Sample Hue Colorized Image 

 

3.2.2.2 Depth Image Recovery from Colorization 

Following depth image colorization, which allows for person detection using color 

information, it becomes necessary to recover the original depth values for further analysis, 

particularly feature extraction. Eq. (3.7) and Eq. (3.8) from the reference [77] are employed 

for this depth recovery process, essentially reversing the colorization step, and reconstructing 

the depth map from the colorized image channels. The formulas involve the parameters like prr, 

prg, and prg (colorized pixel values), drnormal (recovered normal depth value), and drecovery 

(restored depth value). 
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Fig. 3.9 shows the results of colorization (center) and depth recovery (rightmost) from 

the original depth image (leftmost). The original depth image is a Viridis color-mapped image, 

converted from depth values and not suitable for direct visualization. To assess the quality of 

the depth recovery, the Mean Squared Error (MSE) was calculated between the original and 

recovered depth images by using Eq. (3.9) in which m and n are the image width and height, 

I(i,j) and K(i,j) are the coordinates of the original and recovered images. A lower MSE indicates 

greater similarity between the two images. Our experiment determined that the average MSE 

error for 100 image pairs is 0.05. Fig. 3.10 illustrates the comparison between the original raw 

depth image in grayscale (left) and the preprocessed hue-colorized image (right). 
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Fig. 3.9. Comparison of Original Depth Image and Recovery Depth Image 

 

 

Fig. 3.10. Comparison of Raw Depth Image and Preprocessed Colorized Image 

 

3.3 Visualization of the Elderly’s Common Daily Actions 

 During the recording period, elderly residents engaged in a set of common daily activities, 

including “seated in the wheelchair,” “standing,” “sitting on the bed,” and “lying on the bed,” 

along with transition states between these actions. Notably, the rooms were typically occupied 

by a single elderly person, primarily during sleep or rest periods. At other times, the person 

would be marked as “outside” the room. Another significant state captured was “receiving 

assistance,” typically when a caregiver entered the room to provide aid. Activities like folding 

clothes were not considered core components of daily routines. 

 The colorization approach significantly improved the visual representation of depth 

images, enhancing the interpretation of each action and state as shown in Fig. 3.11. In the figure, 

“outside” indicates the absence of a person within the camera’s view. Others represent specific 

actions when a person is present: “seated” (in a wheelchair), “standing” (upright posture), 

“sitting” (on the bed), and “lying” (down for rest). “Transition” signifies a change between 

actions, and “assistance” indicates support from a healthcare provider. 
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Fig. 3.11. Visualization of Each Daily Action of the Elderly Person 
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Chapter 4 

 
 
 

Person Detection 

 
 
 

 

This chapter explores the crucial role of person detection in elderly 

monitoring systems using computer vision techniques. It delves into the 

You Only Look Once (YOLO) detector and compares the model’s 

performance. The evaluation process defines various metrics and 

utilizes two data-splitting strategies to identify the effectiveness of the 

YOLO model for our specific application. Additionally, we introduce a 

bounding box recovery approach to address challenges in detecting 

residents covered by blankets, aiming to improve the overall accuracy 

of the person detection system. 
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4.1 Introduction 

 Person detection, a computer vision technique that identifies people in images and 

videos, plays a vital role in elderly monitoring systems. By automatically locating individuals 

within their living spaces, these systems can monitor activity levels, detect falls and 

emergencies, and ensure overall well-being. Accurate person detection, especially in dynamic 

environments, is crucial to minimize false alarms and missed detections. Furthermore, a 

reliable detection algorithm is necessary to obtain bounding box coordinates (rectangular 

boxes) around the targeted person, as illustrated in Fig. 4.1. 

 

Fig. 4.1. Illustration of Rectangular Boxes around an Elderly Person 

 

4.2 YOLO Detector 

 This section explores a YOLO detector for person detection in our elderly monitoring 

system. This model analyzes entire images at once for real-time applications, balancing speed, 

accuracy, and ease of use. We focus on a large-sized pre-trained version considering our use 

of colorized depth images. Finally, we discuss the evaluation process using two data-splitting 

strategies to identify the optimal YOLO model for our specific needs. 

 

4.2.1 Model Selection  

This study investigates a large-sized YOLO model (YOLOv5l) [78] for person 

detection in elderly monitoring systems. The principle of the model is analyzing the entire 

image at once with a single neural network to predict bounding boxes and object class 

probabilities as shown in Fig. 4.2. This characteristic makes the YOLO model attractive for 

real-time applications like elderly monitoring due to their balanced performance in terms of 

speed, accuracy, and ease of use. 

Additionally, considering our use of colorized images (converted from depth data) that 

lack the typical texture information, we will evaluate the model to determine the most suitable 

option for our elderly monitoring system. The experiment will involve feeding these colorized 

depth images into the chosen YOLOv5l detector to generate bounding boxes around the person 

of interest. 
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Fig. 4.2. Principle of YOLOv5 Detector 

 

4.2.2 Dataset Preparation 

 We evaluated the performance of the person detection model using two training and 

testing data split strategies: All-Data training and Leave-One-Out Cross-Validation (LOOCV) 

[79]. Data splitting strategies for training and testing are illustrated in Fig. 4.3. For evaluation, 

five elderly data from the hospital are used. 

In the All-Data training approach, we utilize the combined data from all five rooms for 

training/validation and testing. However, to prevent overfitting, we ensure the data used for 

testing comes from different dates and times compared to the training/validation data. On the 

other hand, the LOOCV approach involves dividing the data into five sets, one for each room. 

In each iteration, data from one room is used for testing, while the remaining four rooms’ data 

are combined for training. This process is repeated five times, with each room serving as the 

testing set once. Finally, the average results across all five iterations are calculated to assess 

the model’s generalizability. PyTorch served as the software development framework for the 

training and testing processes. 

 

Fig. 4.3. Data Splitting Strategies 
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4.3 Evaluation Metrics 

 To determine whether the developed algorithm was reliable, different metrics were 

employed to assess the performance of the models. For person detection, the focus was on the 

detection model’s ability to correctly identify people (elderly in this context) and distinguish 

them from the background in colorized images. The two key metrics employed were “precision” 

and “recall” [80]. “Precision” measures the accuracy of positive detections whereas “recall” 

assesses the model’s ability to capture all relevant detections. Additionally, the localization 

accuracy of the detection model was evaluated using “mAP@50” and “mAP@50-95” metrics 

where mAP represents the mean Average Precision [80]. These metrics assess how precisely 

the model locates people within the images. They are derived from the Intersection over Union 

(IoU), which measures the overlap between a predicted bounding box (the model’s estimate of 

person location) and a ground-truth bounding box (actual location). “mAP@50” was calculated 

at an IoU threshold of 0.5, indicating a 50% overlap between predicted and actual bounding 

boxes. “mAP@50-95”, calculated across varying IoU thresholds (0.5 to 0.95), indicates 

consistent accuracy even with stricter overlap requirements. Table 4.1 details the focus and 

desired outcome (higher values) for each evaluation metric. 

Table 4.1. Evaluation Metrics for Person Detection 

Metric Focus Higher Value Indicates 

Precision Correctly identified elderly people 
Fewer false positives (background clutter 

identified as elderly) 

Recall Capturing all actual elderly people 
Fewer missed detections (actual elderly 

people not identified) 

mAP 

@50 
Precise location of elderly people 

Better overlap between predicted and 

ground-truth bounding boxes (IoU ≥ 0.5) 

mAP 

@50-95 

Accurate elderly location across 

varying overlap thresholds 

Consistent performance even with stricter 

overlap requirements (0.5 ≤ IoU ≤ 0.95) 

 

 

4.4 Comparison Result 

 We evaluated the YOLOv5l using LOOCV-Average and All-Data training approaches. 

The experimental results are shown in Table 4.2. The experimental results indicated that the 

model achieved the overall performance for LOOCV-Average approach with an average 

precision exceeding 88% and recall exceeding 72%, demonstrating strong generalization 

ability to unseen data. It also achieved a mAP@50 of 80%, indicating accurate person 
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localization. On the other hand, the model performed well in All-Data training, with precision 

and mAP@50 exceeding 98%. The inference time per image is about 19 milliseconds for both 

methods. Overall, YOLOv5l achieved a balance between accuracy and speed for person 

detection in our elderly monitoring system. 

Table 4.2. Experimental Results for YOLOv5l Model 

Training Method 

Evaluation Metrics (%) Inference Time 

(milliseconds 

per image) Precision Recall mAP@50 mAP@50-95 

LOOCV-Average 88.3 72.5 80.0 45.5 19.2 

All-Data 98.1 97.5 98.5 72.4 19.4 

 

 

4.5 Bounding Box Recovery 

 After analyzing the results of person detection, it was observed that the most 

challenging detection scenario involved residents lying on beds covered by blankets. The 

blankets masked the depth information, making it difficult to distinguish the person from the 

bed (i.e., depth values become uniform). This resulted in missed detections, negatively 

impacting the recall rate (percentage of the elderly correctly identified). Despite utilizing 

numerous training annotations, some frames presented these types of missed detections.  

 To address this issue, a bounding box recovery approach was implemented as shown in 

Fig. 4.4. If the person is not detected in the current frame, the algorithm checks the previous 

frame for a detection. If a person was detected previously, the bounding box coordinates from 

the previous frame are used in the current frame. Next, a frame difference is calculated within 

the defined bounding box. This involves counting the number of pixels with intensity changes 

compared to the previous frame. If the total intensity change is less than 30% of the bounding 

box area, it suggests minimal movement, similar to the previous frame. In such cases, the 

algorithm replicates the previous bounding box, crops the image based on that box, and 

continues processing. Conversely, if the intensity change exceeds 30%, significant movement 

is detected, and no bounding box is assigned to the current frame. 
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Fig. 4.4. Illustration of Bounding Box Recovery Process 

 

4.6 Conclusion 

This chapter compares the performance of YOLOv5l person detection algorithms for 

elderly monitoring. Evaluating the real-world hospital data revealed that it achieved a 

promising overall balance between accuracy and speed for person detection within our system. 

While utilizing colorized depth images, which lack the typical texture information of natural 

images, it demonstrated a favorable trade-off in the LOOCV approach, achieving an average 

precision above 88%, recall exceeding 72%, and mAP@50 of 80%. In the All-Data training 

approach, both precision and mAP@50 both surpassed 98%. 

Furthermore, the implemented bounding box recovery technique addressed a specific 

challenge: residents lying on beds covered by blankets. This approach improved the recall rate 

by utilizing information from previous frames when encountering such scenarios with limited 

depth information. 
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Chapter 5 

 
 
 

Action Recognition 

 
 

 

This chapter explores the proposed models for elderly action 

recognition. It explains how these models utilize spatial and temporal 

features extracted from the person’s movement with three main 

approaches. In the first approach, we extract motion appearance and 

motion history features from the depth image sequences and represent 

them using a Histogram of Oriented Gradients (HOG) descriptor. These 

HOG feature vectors are classified using single Machine Learning (ML) 

algorithms and those combined with the stochastic Hidden Markov 

Model (HMM) in the recognition process. In the second approach, we 

extract straightforward temporal-dependent features from the sequence 

of segmented person masks, and a Support Vector Machine (SVM) is 

used for classification. In the third approach, we extract spatiotemporal 

features automatically using Convolutional Recurrent Neural Networks 

(CRNN). This approach incorporates motion information derived from 

body posture changes, inspired by the second approach, to achieve 

robust transition state recognition using CRNN. This chapter addresses 

the introduction, the implementation details, and the experimental 

results. 
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5.1 Introduction 

Action recognition, the process of identifying human actions in videos or image 

sequences, plays a vital role in elderly monitoring systems. It is an active field of research, with 

applications using various sensor technologies like wearables, ambient sensors, and vision 

sensors. The proposed system used a stereo depth camera to recognize actions at care facilities 

for senior citizens. This system can not only reduce workloads for caregivers by automating 

the monitoring process but also provide useful and insightful information to support care 

decisions.  

By recognizing activities like walking, sitting, or eating, these systems can provide 

valuable insights into the health, independence, and well-being of the elderly. This allows for 

early identification of potential problems and timely interventions to support their 

independence and quality of life. Our focus is on action recognition for elderly patients residing 

in elder care facilities, where residents may require varying levels of assistance and may exhibit 

changes in their daily routines. We utilize real-world data captured during their daily activities. 

Common actions include “seated in the wheelchair,” “standing,” “sitting on the bed,” and 

“lying on the bed.” We also consider transitional states like “sitting to lying down,” “standing 

to sitting,” and so forth. There’s typically only one person per room, with “outside” indicating 

the resident’s absence. Additionally, we capture “receiving assistance” when a caregiver enters 

the room. Activities like folding clothes or eating are not considered as they are less frequent 

during our recording period. Hence, our system prioritizes accurate recognition between four 

actions (seated, standing, sitting, lying) and three states (transition, outside, receiving 

assistance) for effective monitoring. The flowchart of processing for these actions is described 

in Fig. 5.1. Actions can be generally described as a sequence of images and thus a sequence of 

images is used to extract features to recognize various actions. To do that, spatial and temporal 

features are extracted from the sequences of images in the proposed system. 

5.2 Evaluation Metrics 

To evaluate how well the model performed in recognizing actions, especially for elderly 

care applications, we used several metrics common in multi-class classification tasks. These 

include “accuracy,” “precision,” “recall,” and “F1-score.” “Accuracy” represents the overall 

percentage of actions, including transition states, classified correctly. However, for elderly care 

applications, accurate recognition of transition states is crucial for timely monitoring and 

intervention. Therefore, we also consider metrics like “precision,” “recall,” and “F1-score” to 
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provide a more detailed picture of the model’s performance in recognizing these critical states. 

“Precision” focuses on how good the model is at identifying specific actions without any 

mistakes. “Recall” measures how well the model catches all instances of a particular action, 

avoiding misses, which is crucial for not missing activities like “lying on the bed for extended 

periods.” “F1-score” combines precision and recall into a single score, giving a balanced view 

of both. Table 5.1 details the specific focus and ideal values for each metric when applied to 

recognizing transition states. 

 

Fig. 5.1. Flowchart of Action Labelling 

 

Table 5.1. Evaluation Metrics for Action Recognition (for “Transition State” Label) 

Metric Focus On Higher Values Indicates 

Accuracy Overall correct classifications 
More actions classified correctly out of 

the total 

Precision 
Specific “transition state” 

recognition 

Fewer incorrect classifications of other 

actions as “transition states” 

Recall Capturing all “transition states” 
Fewer actual “transition state” instances 

missed 

F1-score 
Balanced “transition state” 

performance 

Minimizes confusion between 

“transition states” and other classes 
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Fig. 5.2 shows an example of calculating these metrics for the “transition state” label 

in which True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) 

are marked in the right matrix according to the left confusion matrix. The resulting percentages 

for each metric are described in Eq. (5.1) to Eq. (5.8). Overall, achieving high values for all 

these metrics in action recognition tasks, especially for critical actions and transitions in elderly 

care applications, signifies a well-performing algorithm. 

 

Fig. 5.2. Sample Evaluation for “Transition State” Label 
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5.3 HOG Features-based Recognition 

 HOG features are commonly used descriptors in computer vision for object detection 

and action recognition. HOG features capture the local gradient information within an image, 

which can be helpful for distinguishing between different human poses and actions. Fig. 5.3 

illustrates the overview of the HOG features-based action recognition approach. First, a You 

Only Look Once (YOLOv5) object detector trained with custom data is used to identify people 

in the video frames. The bounding boxes around the detected persons are then used to extract 

HOG features from the corresponding image regions. These extracted HOG feature vectors 

represent the spatial information of the person’s pose within the image.  

The extracted HOG feature vectors are then used for action recognition. We explore 

two approaches: 

• Single ML algorithm: In this approach, we utilize an SVM algorithm to classify the HOG 

feature vectors into different action categories. This allows us to assess the effectiveness 

of individual ML algorithms for real-time action recognition. 

• HMM with ML classifiers: Here, we combine the ML classifiers with a stochastic HMM 

for action recognition. HMMs are powerful for modeling sequential data, which can be 

beneficial for capturing the temporal dynamics of human actions. The HOG features 

provide spatial information about the person’s pose at each frame, while the HMM helps 

in recognizing the sequence of poses that constitute an action. 

We evaluate the proposed HOG features-based recognition approach using data 

collected from three elderly residents at the care center. 

 

Fig. 5.3. Overview of HOG Features-based Action Recognition 
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5.3.1 Feature Extraction 

After identifying the person using YOLOv5, we obtain bounding boxes of various sizes. 

These bounding boxes are cropped from the original image and then resized to a fixed size 

(128×128) for consistency. We intend to extract features from the depth image sequences in 

this approach. For this purpose, depth maps are then recovered from the resized images as 

shown in Fig. 5.4. The formula used for the depth recovery was described in Eq. (3.7) and Eq. 

(3.8) (refer to Chapter 3 for details).  

The architecture of feature extraction is shown in Fig. 5.5. Unlike using single frames, 

this approach utilizes an action sequence of five consecutive bounding boxes for feature 

extraction. To capture both spatial and temporal information, the Depth Motion Appearance 

(DMA) and the Depth Motion History (DMH) features are applied [81]. The DMA captures 

the overall shape and appearance of the person within the sequence. The DMH captures the 

temporal information of depth motion throughout the action sequence. After obtaining these 

two action representation maps, the HOG is used as a feature descriptor to summarize the 

extracted information. Details on calculating DMA and DMH features are provided in the 

following subsections. 

 
Fig. 5.4. Person Silhouette Cropping, Resizing, and Depth Recovery 

 

5.3.1.1 Depth Motion Appearance 

 The DMA captures the overall shape and appearance of the person’s movement 

throughout the action sequence. It achieves this by creating a 3D representation that combines 

all the depth images in the sequence [81]. Eq. (5.9) shows the calculation for DMA, where the 

Dt(i, j) represents a depth value at a specific pixel location (i, j) in the tth depth image, and 

DMAt(i, j) represents the corresponding depth value in the resulting DMA image. In essence, 

DMA provides a way to extract information about the person’s appearance and overall 3D 

shape during the action. 
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Fig. 5.5. Architecture of Feature Extraction 

 

5.3.1.2 Depth Motion History 

 The DMH complements the DMA by capturing the temporal aspect of the action 

sequence. While DMA focuses on the overall appearance of the motion, DMH helps us 

understand the actual movements performed over time [81]. Eq. (5.10) shows the calculation 

for DMH, where DMHt(i, j) represents the historical depth motion value at a specific pixel 

location (i, j) in the DMH image, τ defines the time interval considered for the history, and δ is 

a threshold value for depth differences between consecutive depth maps. The DMH builds upon 

the concept of Motion History Image (MHI) typically used in 2D videos. However, DMH 

incorporates depth information to capture changes in depth over time. This allows DMH to 

account for situations where direction changes in body movements might be obscured in a 

standard MHI. By combining DMA and DMH, we obtain a more comprehensive representation 

of the action sequence for recognition. 
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5.3.1.3 Histogram of Oriented Gradients 

 Once we have obtained the two action representation maps (DMA for appearance and 

DMH for temporal information), we use HOG to describe the local features within these maps. 

HOG essentially analyzes the intensity gradients in different directions within small image 

regions. For each map (DMA and DMH), the image is divided into small grids of 8×8 pixels 

(cells). Within each cell, the gradients are calculated in 9 different directions. To account for 

variations in lighting, a normalization step is applied using a slightly larger block size (2×2 

cells). By performing this analysis on all the cells within a map, we obtain a HOG descriptor 

with a dimension of 8,100. Finally, the HOG descriptors from both DMA and DMH maps are 

combined (concatenated) to create a single 16,200-dimensional feature vector that represents 

the entire action sequence. This feature vector will be used for classification in the next step. 

 

5.3.2 Recognition Model 

 This section explores two approaches for action recognition using the extracted 

features: utilizing an SVM to classify HOG feature vectors in the first approach and integrating 

HMM with ML classifiers for classification in the second approach. The experimental results 

and discussion for each approach are also described in this section. 

 

5.3.2.1 Support Vector Machine 

 A linear SVM is used here to classify various actions based on depth map features. For 

each action, we extract depth information from five consecutive frames and convert them into 

HOG descriptors. These descriptors are then fed into the trained SVM for action recognition.  

To evaluate the performance of the SVM, we use a leave-one-out cross-validation 

approach. Data from Room 1 are used to train the SVM, while Rooms 2 and 3 provide testing 

data. Three image sequences of varying lengths are randomly generated from each of these 

rooms. All sequences are annotated as the first frame signifying the elderly entering the room 

and the last frame signifying leaving. The SVM attempts to recognize actions every five frames 

within each testing sequence, and its results are compared with the pre-defined labels (ground 

truth) to calculate accuracy.  

The detailed results for each sequence are presented in confusion matrices as shown in 

Table 5.2, where the values represent the number of frames classified for each action. The 

results are encouraging. The average accuracy for the three testing sequences from Room 2 is 

95.3%, and for Room 3, it is 88.7%, leading to an overall average accuracy of 92% across all 
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six sequences. This demonstrates that the system achieves reasonable action recognition rates 

even with random sequences of varying lengths. However, it is important to note that some 

frames are misclassified as “Transition states” due to similarities in appearance and motion 

between certain activities. Therefore, we explore another technique to improve the 

differentiation of these transition states. 

Table 5.2. Experimental Results for SVM Recognition 

Actual 

Actions 

* 

Predicted Actions 

Room 2-1 (Accuracy: 94%) Room 3-1 (Accuracy: 97%) 

Tr Se St Si Ly A Tr Se St Si Ly A 

Tr 27 2 0 40 0 0 19 0 0 41 1 0 

Se 10 57 0 15 0 0 0 0 0 5 0 1 

St 0 0 0 0 0 0 0 0 0 0 0 0 

Si 0 0 0 120 0 0 0 0 0 29 0 0 

Ly 146 5 0 0 3,622 1 17 0 0 0 3,489 0 

A 2 0 0 5 3 9 14 25 0 5 0 46 

 Room 2-2 (Accuracy: 98%) Room 3-2 (Accuracy: 94%) 

Tr 0 0 0 0 0 0 20 0 0 2 1 0 

Se 0 0 0 0 0 0 5 0 0 0 0 1 

St 0 0 0 0 0 0 0 0 0 0 0 0 

Si 0 0 0 0 0 0 1 0 0 78 0 0 

Ly 976 5 0 0 6,605 0 15 0 0 0 1,379 0 

A 29 13 0 10 0 20 39 15 0 20 0 54 

 Room 2-3 (Accuracy: 94%) Room 3-3 (Accuracy: 75%) 

Tr 5 0 0 49 0 0 315 5 12 0 5 0 

Se 0 0 0 0 0 0 39 57 0 0 0 0 

St 0 0 0 0 0 0 62 30 33 0 0 0 

Si 0 0 0 826 0 2 0 0 0 0 0 0 

Ly 0 0 0 0 0 0 163 0 0 0 1,203 0 

A 5 0 0 0 0 38 106 33 15 45 67 135 

* Tr: Transitions, Se: Seated, St: Standing, Si: Sitting, Ly: Lying, A: Assistance 

 

5.3.2.2 Hybrid Hidden Markov Models 

 The second approach to HOG features-based action recognition uses HMM combined 

with ML algorithms. This hybrid approach leverages the strengths of both techniques. Here, 

we will develop hybrid HMMs that integrate the classification outputs from the ML algorithms. 

This section will delve deeper into the details of the HMMs, including: (1) defining the number 

of hidden states in the model, which represent different actions or activities, (2) calculating the 

probabilities of transitioning between states and observing specific features given a particular 

state, and (3) outlining the steps involves in using HMM for prediction of actions. 
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5.3.2.2.1 Action Definitions 

This section defines the set of actions we aim to recognize using the HMMs. The 

experiment focuses on five distinct actions: ‘Transition’, ‘Seated in the wheelchair’, ‘Standing’, 

‘Sitting’, and ‘Lying’. For each action, depth features are extracted from five consecutive 

frames and converted into HOG descriptors, similar to the SVM approach. Since HMMs 

require sequences of observations, the classified actions are transformed into observation 

sequences. These observation sequences are then fed into the HMM to predict the most 

probable sequence of actions occurring in the entire sequence of features. 

 

5.3.2.2.2 HMM Parameters and Probability Measures 

 The HMM structure employed in this system is visualized in Fig. 5.6. The model is 

characterized by two parameters and three probability measures. 

• Number of States (S): This corresponds to the number of actions the system can 

recognize. Here, we have five states (S1 to S5) representing the five defined actions. 

• Number of Observation Symbols per State (V): Each state can emit a specific 

observation symbol based on the HOG feature classification results from the ML 

algorithms. Therefore, we define five observation symbols (v1 to v5) per state, 

corresponding to the five possible actions. 

 

 

Fig. 5.6. HMM Model Structure 

S1

S2

S4 S5

S3

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5



 

 

47 

 

Then, the three key probability measures describe the HMM’s behavior. 

• State Transition Probability Distribution (A): This describes the probability of 

transitioning from one action state to another. It is calculated by analyzing a long 

training sequence and creating a co-occurrence matrix that captures how frequently 

actions transition from one to another. The formula is described in Eq. (5.11) where aij 

is the transition from one state to another and qt is the state at time t. 

−
= = = =

1
{ },    P[ | ]
ij ij t j t i

A a a q S q S      (5.11) 

• Emission Probability Distribution (B): This represents the probability of observing a 

particular feature (HOG descriptor) given the current action state. To calculate this, two 

training datasets with equal samples for each action are used as shown in Table 5.3. 

HOG features are extracted from five consecutive frames in each sequence, and the 

calculation process is further explained in Algorithm 1. The formula is described in 

Eq. (5.12) where bj(k) is the occurrence probability in each state j and Ot is the 

observation symbol at time t. 

= = = ={ ( )},    ( ) P[ | ]
j j t k t j

B b k b k O v q S     (5.12) 

• Initial State Distribution (π): This describes the probability of starting in each action 

state at the beginning of a sequence. Here, we assume an equal probability for each 

action as the starting point. The formula is described in Eq. (5.13) where πi is the initial 

probability for each state i. The probability we used in our approach is described in Eq. 

(5.14). Then, λ represents the complete HMM model as in Eq. (5.15). 

  = = =
1

{ },    P[ ]
i i i

q S    1 , , 5i j k    (5.13) 

 =   0.2 0.2 0.2 0.2 0.2      (5.14) 

 = ( , , )A B       (5.15) 

 

Table 5.3. Training Datasets for Calculating HMM Emission Probability Distribution B 

Action Transition Seated Standing Sitting Lying 

State S1 S2 S3 S4 S5 

Number of Sequences 

in Dataset-X 
900 900 900 900 900 

Number of Sequences 

in Dataset-Y 
100 100 100 100 100 
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Algorithm 1. Calculation of B by Computing Mean HOGs 

Input: Dataset-X, Dataset-Y 

Output: B: emission probability distribution 

1. Function MeanHOG_HMM (Dataset-X, Dataset-Y): 

2. Calculate mean HOG feature vectors for each state of Dataset-X and set as 

M1H, M2H, M3H, M4H, and M5H. 

3. Perform the following steps for each state of Dataset-Y. 

4.  Assign labels to all 100 input HOGs using Eq. (5.16) to Eq. (5.18). 

  
=

= − = 2

1

( , ) ( ) , 16200
n

i i
i

d IH MH IH MH n                     (5.16) 

  
1 5

arg min[ ( , )]
j

j

k d IH M H
 

=                                              (5.17) 

   assign label , 1,2,3,4,5
k
v k=                                   (5.18) 

  
where d(IH, MH) is the Euclidean distance between input HOG IH and 

mean HOG MH and n is the length of each HOG feature vector. 

5.  Calculate the length (magnitude) of each labeled HOG. 

6.  Compute the normal distribution for each HOG length. 

7.  Sum normal distributions which have the same labels. 

8.  Normalize five normal distributions by dividing each one with a 

summation of all normal distributions. 

9. Return B 

10. End Function 

  

The Baum-Welch Algorithm [82] is used to train the HMM based on the calculated A 

and B probabilities. During training, the HOG features from sequences in Dataset-Y are 

transformed into observation sequences, and the trained A and B probabilities are visualized 

using heatmaps in Fig. 5.7. These heatmaps ensure that the probabilities for each row (action 

state) sum to one. Finally, by combining the initial state distribution π with the trained A and B 

probabilities, we obtained the complete HMM model parameter set. The Viterbi Algorithm is 

then applied to predict the most likely sequence of hidden states (actions) for a given 

observation sequence. 
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(a) HMM Transition Probability Matrix A 

 

(b) HMM Emission Probability Matrix B 

Fig. 5.7. Heatmap Visualization after Training with Baum-Welch Algorithm 

 

5.3.2.2.3 Procedures for HMM Prediction 

This section describes how the HMM predicts action sequences for unseen data. Fig. 

5.8 illustrates the prediction process using a short one-minute video sequence (60 frames) 

processed at 1 frame per second (1fps). HOG features capturing depth appearance and motion 

are extracted every five frames, resulting in 12 feature vectors. Each feature vector is converted 

into an observation symbol based on the action it represents. To match the original number of 

frames, each symbol is duplicated five times, leading to 60 observed symbols. 
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These 60 observed symbols are then fed into the HMM. The Viterbi Algorithm is used 

to predict the most likely sequence of hidden states (actions) for the entire sequence. The 

predicted hidden states are then compared one-on-one with the ground truth labels (predefined 

actions) to calculate accuracy. For instance, if 50 states out of 60 in the example sequence of 

Fig. 5.8 were correctly predicted, the accuracy would be 83.33%.  

Following this prediction process, the HMM achieves an accuracy of 91% on the 

training dataset (Dataset-Y). The detailed results for these predictions, including how often each 

action was correctly classified and misclassified, are presented in the confusion matrix shown 

in Table 5.4. 

 
Fig. 5.8. HMM Prediction on Testing Image Sequence 

 

Table 5.4. Confusion Matrix of HMM Prediction for Training Dataset (MeanHOG + HMM) 

Actual 

Actions 

Predicted Actions 

Transition Seated Standing Sitting Lying 

Transition 90 1 7 2 0 

Seated 14 86 0 0 0 

Standing 7 0 93 0 0 

Sitting 14 0 0 86 0 

Lying 2 0 0 0 98 

5frames5frames5frames...  …  …5frames5frames5frames

HOGHOGHOG... … …HOGHOGHOG

One minute duration (60 frames at 1fps)

v2  5v4  5v2  5... … …v4  5v4  5v2  5

HMM

S2S2S2S2S2… … … … … … …S1S1S2S2S2

Features

Observed Symbols

Hidden States

Ground Truth Data

frame 1 to 5

S2S2S2S2S2… … … … … … …S2S2S2S2S2

frame 55 to 60

frame 1 to 5 frame 55 to 60

frame 6 to 54

frame 6 to 54



 

 

51 

 

5.3.2.2.4 Alternative HMM Combinations 

We also explored alternative approaches for calculating the emission probability 

distribution B within the HMM. These alternatives aim to improve the accuracy of the HMM 

predictions. The transition probability matrix A and initial distribution matrix π remain 

unchanged from the previous approach. However, the procedure for calculating B in 

Algorithm 1 is modified. 

• Mean HOG and Euclidean Distance: This method calculates the average HOG 

feature vector (mean HOG) for each action class as described in Algorithm 1. 

Sequences from Dataset-Y are then assigned labels based on the Euclidean distance 

between the input HOG and the mean HOG of each class. 

• k-Nearest Neighbors (k-NN): This method employs the k-NN algorithm to classify 

each HOG feature vector based on the most frequent action label among its k nearest 

neighbors in the training data. The resulting action labels are used to calculate the 

emission probabilities. The calculation process is described in Algorithm 2. 

Algorithm 2. Calculation of B by Computing k-NN 

Input: Dataset-X, Dataset-Y 

Output: B: emission probability distribution 

1. Function k-NN_HMM (Dataset-X, Dataset-Y): 

2. Train the k-NN model using HOG features from Dataset-X and divide it into 

five classes such as C1, C2, C3, C4, and C5. 

3. Perform the following steps for each state of Dataset-Y. 

4.  Assign labels to all 100 input HOGs using Eq. (5.19) and Eq. (5.20). 

   ( )k kNNpred IH=                                                  (5.19) 

   assign label , 1,2,3,4,5
k
v k=                           (5.20) 

  where kNNpred(IH) is k-NN prediction on HOGs. 

5.  Calculate the length (magnitude) of each labeled HOG. 

6.  Compute the normal distribution for each HOG length. 

7.  Sum normal distributions which have the same labels. 

8.  Normalize five normal distributions by dividing each one with a 

summation of all normal distributions. 

9. Return B 

10. End Function 
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• SVM: This method utilizes an SVM to classify each HOG feature vector into one of 

the action classes. The classified action labels are then used to calculate the emission 

probabilities. The calculation process is described in Algorithm 3. 

Algorithm 3. Calculation of B by Computing SVM 

Input: Dataset-X, Dataset-Y 

Output: B: emission probability distribution 

1. Function SVM_HMM (Dataset-X, Dataset-Y): 

2. Train the SVM model using HOG features from Dataset-X and divide it into 

five classes such as C1, C2, C3, C4, and C5. 

3. Perform the following steps for each state of Dataset-Y. 

4.  Assign labels to all 100 input HOGs using Eq. (5.21) and Eq. (5.22). 

  ( )k SVMpred IH=                                                (5.21) 

   assign label , 1,2,3,4,5
k
v k=                         (5.22) 

  where SVMpred(IH) is SVM prediction on HOGs. 

5.  Calculate the length (magnitude) of each labeled HOG. 

6.  Compute the normal distribution for each HOG length. 

7.  Sum normal distributions which have the same labels. 

8.  Normalize five normal distributions by dividing each one with a 

summation of all normal distributions. 

9. Return B 

10. End Function 

 

The same training datasets (Dataset-X and Dataset-Y) used previously are employed for 

these alternative methods. New HMM models are trained using the Baum-Welch algorithm 

with the emission probabilities calculated from each method (k-NN and SVM). Finally, the 

HMM predictions are performed using the Viterbi Algorithm.  

Both alternative approaches, (k-NN + HMM) and (SVM + HMM), achieve a 

significantly higher accuracy of 99% on the training dataset compared to the original method 

(91%). The detailed results of these predictions are shown in Table 5.5. 
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Table 5.5. Confusion Matrix of HMM Prediction Results Tested on the Training Dataset 

(a) k-NN + HMM 

Actual Actions 
Predicted Actions 

Transition Seated Standing Sitting Lying 

Transition 100 0 0 0 0 

Seated 1 99 0 0 0 

Standing 0 0 100 0 0 

Sitting 1 0 0 99 0 

Lying 1 0 0 0 99 

(b) SVM + HMM 

Actual Actions 
Predicted Actions 

Transition Seated Standing Sitting Lying 

Transition 100 0 0 0 0 

Seated 0 100 0 0 0 

Standing 1 0 99 0 0 

Sitting 2 0 0 98 0 

Lying 0 0 0 0 100 

 

5.3.2.2.5 Experimental Results 

This section evaluates the system’s performance using real-world data from three 

separate rooms of the elder care center. Each testing sequence was trimmed to capture the 

resident entering the room (first frame) and leaving (last frame). The HMM recognition was 

performed once per minute throughout each testing sequence. The predicted actions were then 

compared with ground truth labels to calculate accuracy. 

Table 5.6 compares the three proposed methods that combine HMMs with different 

classification algorithms. The average accuracy for each method in each room is presented. 

The results show that the combination of SVM classification and HMM for calculating the 

emission probability matrix achieved the highest overall accuracy of 84.04% across all testing 

sequences. 

Table 5.7 details the recognition accuracy rate for each specific action, using the (SVM 

+ HMM) method in each testing room, in which the “Transition” label has the lowest accuracy 

rate with an average of 64.14%. 
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Table 5.6. Comparison of Three Methods 

Room 

ID 

Total 

Sequences 

Average Accuracy for All Sequences 

After Testing with Three Methods (%) 

Mean + HMM k-NN + HMM SVM + HMM 

1 22 87.05 95.19 90.28 

2 10 74.83 89.01 81.37 

3 17 79.41 57.56 80.48 

Average Accuracy 80.43 80.59 84.04 

 

Table 5.7. Accuracy for Each Specific Action Testing with the (SVM + HMM) Method 

Room 

ID 

Accuracy (%) 

Transition Seated Standing Sitting Lying Overall 

1 63.37 95.45 97.24 95.41 91.65 90.28 

2 54.93 75.09 - 98.83 74.61 81.37 

3 74.13 48.68 59.96 83.87 91.89 80.48 

Average 64.14 73.07 78.60 92.70 86.05 84.04 

 

Table 5.8 further details the action recognition results for each sequence in each room 

using the (SVM + HMM) method. These tables provide information about the recorded data 

from all three rooms, including the sequence of duration, number of frames, start date and time, 

and processing time. The sequences are presented from shortest to longest duration. Notably, 

the average accuracy for Room 1 sequences was 90.28%, while Rooms 2 and 3 achieved 

81.37% and 80.48%, respectively. It is important to note that the testing process was conducted 

on a powerful machine with a 64-bit Core i9 processor, 64GB RAM, and an NVIDIA GeForce 

RTX 3090 GPU. These results from Table 5.8 demonstrate that the proposed system can 

handle real-time action recognition on continuous, long-duration video sequences. 

For a broader comparison, Table 5.9 presents the performance of our HMM methods 

against related methods from previous works. Different approaches to input data and methods 

were used in these prior studies, so the comparison included only the number of actions each 

approach can recognize. The results indicate that our proposed approach achieves higher 

recognition accuracy compared to these other methods. However, the accuracy may vary 

according to the dataset scales of each approach. 

 



 

 

55 

 

Table 5.8. Accuracy for Each Testing Sequence (SVM + HMM) 

(a) Room 1 Sequences 

Sequence Duration 
Total Frame 

(1fps) 

Start Time 

(yyyy/mm/dd_hh:mm) 

Accuracy 

(%) 

Processing 

Time 

1 3 min 168 2019/10/21_07:19 86.31 1 min 

2 7 min 433 2019/10/24_08:44 87.76 4 min 

3 9 min 530 2019/10/21_18:25 85.66 4 min 

4 20 min 1,230 2019/10/19_12:47 72.11 11 min 

5 28 min 1,684 2019/10/21_17:37 91.75 15 min 

6 36 min 2,192 2019/10/22_17:16 94.30 20 min 

7 37 min 2,235 2019/10/19_13:32 96.06 21 min 

8 1 hr 05 min 3,876 2019/10/24_07:27 83.18 35 min 

9 1 hr 51 min 6,673 2019/10/24_11:34 86.68 1 hr 

10 1 hr 52 min 6,687 2019/10/19_08:12 95.10 1 hr 02 min 

11  2 hr 36 min 9,347 2019/10/21_11:54 90.46 1 hr 23 min 

12 2 hr 44 min 9,865 2019/10/20_11:44 97.77 1 hr 31 min 

13 2 hr 48 min 10,063 2019/10/22_11:19 85.44 1 hr 33 min 

14 3 hr 02 min 10,927 2019/10/18_12:08 99.35 1 hr 40 min 

15 3 hr 15 min 11,688 2019/10/23_11:38 96.89 1 hr 47 min 

16 7 hr 20 min 26,412 2019/10/12_20:54 96.41 4 hr 03 min 

17 10 hr 59 min 39,535 2019/10/20_18:57 86.78 6 hr 06 min 

18 11 hr 10 min 40,158 2019/10/21_18:40 86.38 6 hr 14 min 

19 11 hr 30 min 41,407 2019/10/22_18:02 92.67 6 hr 25 min 

20 11 hr 43 min 42,234 2019/10/18_17:58 91.69 6 hr 54 min 

21 12 hr 11 min 43,842 2019/10/23_17:05 93.37 7 hr 22 min 

22 12 hr 36 min 45,366 2019/10/19_17:51 90.11 7 hr 59 min 

Average Accuracy 90.28 - 

(b) Room 2 Sequences 

Sequence Duration 
Total Frame 

(1fps) 

Start Time 

(yyyy/mm/dd_hh:mm) 

Accuracy 

(%) 

Processing 

Time 

1 6 min 362 2019/10/26_07:20 67.96 3 min 

2 18 min 1,078 2019/10/26_07:32 92.12 11 min 

3 41 min 2,455 2019/10/28_04:45 93.93 24 min 

4 1 hr 10 min 4,214 2019/10/26_06:02 92.05 43 min 

5 2 hr 10 min 7,808 2019/10/27_04:35 83.03 1 hr 19 min 

6 2 hr 22 min 8,494 2019/10/26_09:54 94.59 1 hr 26 min 

7 2 hr 28 min 9,488 2019/10/25_11:07 77.18 1 hr 35 min 
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8 11 hr 21 min 40,846 2019/10/25_17:01 53.04 6 hr 53 min 

9 11 hr 44 min 42,214 2019/10/26_15:10 63.57 7 hr 33 min 

10 12 hr 11 min 43,896 2019/10/27_14:02 96.22 7 hr 24 min 

Average Accuracy 81.37 - 

(c) Room 3 Sequences 

Sequence Duration 
Total Frame 

(1fps) 

Start Time 

(yyyy/mm/dd_hh:mm) 

Accuracy 

(%) 

Processing 

Time 

1 3 min 171 2019/10/26_07:56 84.80 2 min 

2 25 min 1,511 2019/10/27_04:24 72.34 16 min 

3 27 min 1,630 2019/10/12_12:09 93.56 17 min 

4 32 min 1,941 2019/10/26_07:23 80.94 21 min 

5 39 min 2,325 2019/10/22_19:16 81.29 23 min 

6 52 min 3,146 2019/10/25_12:21 69.52 33 min 

7 1 hr 02 min 3,697 2019/10/12_13:47 93.70 38 min 

8 1 hr 25 min 5,112 2019/10/27_06:12 64.10 55 min 

9 2 hr 01 min 7,240 2019/10/28_05:11 79.93 1 hr 17 min 

10 10 hr 25 min 38,085 2019/10/18_19:45 79.95 6 hr 22 min 

11 10 hr 43 min 38,551 2019/10/20_19:23 77.13 6 hr 34 min 

12 11 hr 17 min 40,608 2019/10/12_17:54 93.84 6 hr 50 min 

13 11 hr 23 min 40,971 2019/10/26_16:48 71.05 5 hr 51 min 

14 11 hr 41 min 42,092 2019/10/19_19:33 73.67 7 hr 19 min 

15 11 hr 44 min 42,263 2019/10/21_18:32 70.23 7 hr 25 min 

16 11 hr 54 min 42,823 2019/10/27_15:47 92.31 7 hr 11 min 

17 11 hr 55 min 42,882 2019/10/25_17:39 89.82 7 hr 23 min 

Average Accuracy 80.48 - 

 

Table 5.9. Comparison between the Proposed Methods and the Previous Works 

Approach Method No. of Actions Accuracy (%) 

RGB Images CNN [37] 15 71.00 

Skeleton Random Forest [42] 20 70.00 

Sensor Data Two-Layer HMM [56] 13 74.85 

Sensor Data Hierarchical HMM [57] 12 65.20 

Depth Images 

(Proposed 

Method) 

SVM 5 73.22 

Mean HOG + HMM 5 80.43 

k-NN + HMM 5 80.59 

SVM + HMM 5 84.04 
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5.3.2.3 Discussion 

This section discusses the key findings and limitations of the explored approaches for 

HOG features-based action recognition. Our experiments evaluated three methods that 

combine HMMs with different classification algorithms. The results revealed that the 

combination of SVM classification and HMM for calculating the emission probability matrix 

achieved the highest overall accuracy. This suggests that SVM effectively classifies the 

extracted features (HOG descriptors) for action recognition within the HMM framework. 

Moreover, it also significantly outperformed the recognition that used SVM alone. 

The findings of this study warrant careful consideration due to limitations in the data 

collection process. The data used for training and testing was collected from only three rooms 

in a single care center. This limited scope might affect the generalizability of the system to 

different environments.  

Despite promising results, the method encounters some recognition challenges. As 

shown in Table 5.7, it sometimes misclassifies actions as “Transition”, especially in the 

following scenarios: 

• Situation 1: When a person lies on the bed in an unusual position. 

• Situation 2: When the person is not visible due to positioning or objects in the frame. 

• Situation 3: When two actions share similar movement patterns. 

Some examples of common false recognition in these situations are shown in Fig.  5.9. 

Another interesting area for further research would be to examine the ‘Transition’ action in 

more detail and analyze the high-risk transitional states from one action to another. Hence, 

these recognition errors are investigated in the next approach to improve the performance of 

the system. 

 

Fig. 5.9. Examples of the Common False Action Recognitions in Situation 1 (left two 

images), Situation 2 (middle two images), and Situation 3 (right two images) 
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5.4 Temporal Features-based Recognition 

 As discussed earlier (in the introduction section), we hypothesized that a person’s 

movements would increase during transitions between actions (e.g., standing up from a chair) 

compared to periods of stable posture while performing basic actions (e.g., sitting). This 

suggests that analyzing body movement over a short period could be useful for classifying 

whether the person is in a transition state or not. Since this classification depends on analyzing 

movement over time, the extracted features are referred to as temporal-dependent features. 

This section explores a complementary approach that leverages temporal features for 

action recognition. Here, we extract these features from consecutive binary mask images and 

combine the pixel values at the same coordinates to create a representative image. Fig. 5.10 

provides an overview of this approach. To evaluate its effectiveness, we applied this method 

to data collected from three elderly residents at the care center. 

 

Fig. 5.10. Overview of Temporal Features-based Action Recognition 

 

5.4.1 Person Segmentation 

Extracting a clean representation of the person in each frame is crucial for analyzing 

their movements during action transitions. While the person detector provides bounding boxes 

that include the person along with background information and other objects, we need to isolate 

the person for further analysis. 

This section describes the approach used for person segmentation. Here, we leverage 

the Segment Anything Model (SAM) [83] developed by Meta AI. Unlike YOLOv5’s instance 

segmentation model [84], which requires pre-existing mask annotations for training, SAM 
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offers a powerful alternative. SAM excels at various segmentation tasks without additional 

training data (mask annotations). This makes it ideal for our scenario where creating custom 

training masks would be time-consuming. Besides, trained on a massive dataset, SAM 

generates high-quality person masks from various prompts like bounding boxes used in this 

experiment as shown in Fig. 5.11. The process flow is that the bounding box coordinates 

obtained from YOLOv5 are fed as prompts to SAM first. Then, SAM generates person masks 

for each frame. The obtained masks are converted into binary images for further processing. 

 

Fig. 5.11. Proposed Person Detection and Mask Extraction 

Since the bounding boxes may have different sizes, the extracted masks are padded 

with black pixels to create uniform images (144×144 pixels) as shown in Fig. 5.12. The size 

was chosen based on the analysis of bounding box sizes from the person detection step.  

 

Fig. 5.12. Binarized Padding Image with a Fixed Size 

Our approach focuses on analyzing sequences of images rather than individual frames. 

This emphasis stems from the understanding that transitions between actions involve more 

movement than stable postures during specific actions. 

To determine the ideal duration for analyzing movement and classifying transitions, we 

conducted an in-depth analysis of ground-truth transition durations in the three experimental 

rooms. This analysis revealed that 3 seconds was the most frequent transition duration. The 

histogram of the transition durations shown in Fig. 5.13 supports the selection of an optimal 

duration between 2 and 12 seconds. Considering the trade-off between delayed recognition for 

longer durations and potential inaccuracies for shorter durations, a duration range of 3-5 

seconds was deemed suitable. 
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Fig. 5. 13. Histogram of Transition Duration 

Given the processing rate of 1fps, a 5-second duration was chosen for robust action 

recognition. This translates to analyzing five consecutive frames within each sequence. To 

process a continuous video stream, a sliding window method with a window size of 5 frames 

and a stride of 1 frame is employed (similar to the ground-truth labeling process). This approach 

ensures continuous analysis throughout the video sequence. By combining person 

segmentation and analyzing sequences of frames, we can effectively capture the body 

movement information necessary to identify transition states. 

After comparing the representative images, the differences can be seen as expected in 

Fig. 5.14 in which the representative images are converted to grayscale by multiplying the pixel 

values with 25 for visualization purposes. However, the original combined pixel values 

(minimum of 0 and maximum of 5) are used for further processing by converting 2D images 

into 1D feature vectors. Then, these extracted feature vectors are classified using the SVM 

classifier. 

 

Fig. 5.14. Comparison of the Transition State and Primitive Action 
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5.4.2 Experimental Results and Discussion 

 To evaluate the effectiveness of the temporal features-based approach for transition 

state recognition, we conducted experiments using data collected from three rooms in the care 

center. Data was collected from all three rooms to ensure a balanced representation of different 

environments. We selected 30-minute video sequences from each room for testing. These 

sequences were chosen to include a significant number of transition states. Each room sequence 

focused on capturing specific transitions that were prevalent in that environment: 

• Room 1: Standing ↔ Seated in Wheelchair 

• Room 2: Sitting on Bed ↔ Lying on Bed 

• Room 3: Standing ↔ Sitting on Bed 

Table 5.10 summarizes the model performance on four evaluation metrics. Compared 

to previous approaches relying on HOG features, this method achieved a significantly higher 

accuracy rate for recognizing transition states. This result suggests that analyzing motion 

information derived from body posture changes is effective in distinguishing transitions from 

primitive actions. 

Encouraged by the success of this approach, we explored a new method that leverages 

motion information within DL networks. This approach aims to achieve not only robust 

transition state recognition but also automate feature extraction and action recognition within 

a single framework. 

Table 5.10. Performance Evaluation 

Metric Room ID 
Action 

Average (%) 
Transition Seated Standing Sitting Lying 

A
cc
u
ra
cy

 

(%
) 

1 90.22 97.94 95.78 99.78 96.61 96.01 

2 97.27 - - 99.00 98.16 98.14 

3 82.28 - 96.06 82.06 - 86.80 

P
re
ci
si
o
n
 

(%
) 

1 51.50 98.70 94.51 60.00 93.22 79.59 

2 61.64 - - 100.0 98.54 86.73 

3 48.97 - 26.03 99.56 - 58.19 

R
ec
al
l 

(%
) 

1 74.46 97.33 91.82 60.00 49.11 74.54 

2 68.18 - - 93.94 99.16 87.09 

3 77.02 - 52.78 78.14 - 69.31 

F
1
-s
co
re
  

(%
) 

1 60.89 98.01 93.15 60.00 64.33 75.28 

2 64.76 - - 96.88 98.85 86.83 

3 59.97 - 34.87 87.56 - 60.80 
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5.5 Spatiotemporal Features-based CRNN Integration 

 Building upon the success of the previous approach, this section explores a method that 

integrates motion information with a CRNN for transition state recognition. This approach aims 

to not only achieve robust recognition but also automate feature extraction and action 

recognition within a single framework. The proposed approach is illustrated in Fig. 5.15. Fig. 

5.16 visually demonstrates the hypothesis behind using CRNN for transition state recognition. 

We evaluated this method using data from six elderly residents, collected from both the care 

center and the hospital setting, to ensure broader applicability. 

 

Fig. 5.15. Overview of Spatiotemporal Features-based CRNN Integration 

 

 

 

Fig. 5.16. Transition State Recognition using CRNN Architectures 
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5.5.1 MotionCRNN Action Recognition Model 

 This subsection delves into the core component of the proposed method: the 

MotionCRNN action recognition model. This model integrates Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) to extract spatiotemporal features 

for robust action recognition, particularly focusing on transition states. Here, the model not 

only recognizes actions but also automates feature extraction, streamlining the overall process. 

The process flow of MotionCRNN-based action recognition is shown in Fig. 5.17.  

 

Fig. 5.17. Process of MotionCRNN Action Recognition Model 

The model follows a multi-step process: 

• Motion image calculation: Motion information is captured by calculating the 

difference between consecutive segmented person mask images as shown in Fig. 5.18. 

This creates a motion image sequence for each video frame. 

 

Fig. 5.18. Calculation of Motion Image 

 

• Spatial feature extraction with CNN: Transfer learning is applied to a pre-trained 

EfficientNetB4 [85] architecture to extract spatial features from the motion image 

sequences. EfficientNetB4 is chosen for its efficiency and lightweight pre-trained 

weights. 
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• Temporal feature extraction with RNN: Gated Recurrent Unit (GRU) layers [86] are 

employed within the RNN component to capture temporal dependencies in the motion 

information across consecutive frames. GRUs are specifically chosen for their 

effectiveness in handling these dependencies compared to Long Short-Term Memory 

(LSTM) networks or basic RNNs. 

The specific model architectures of the CNN encoder and the RNN decoder are shown in Fig. 

5.19.  

 

(a)       (b) 

Fig. 5.19. CRNN Architecture: (a) CNN Encoder, (b) RNN Decoder 

• CNN encoder: The CNN encoder leverages transfer learning from EfficientNetB4. The 

last Fully Connected (FC) layer is removed and replaced with two hidden FC layers 

with batch normalization, Rectified Linear Unit (ReLU) activation, and a dropout layer 

to prevent overfitting. An additional FC layer is added for feature embedding. 

• RNN decoder: The RNN decoder consists of three unidirectional GRU layers, a 

dropout layer, and a final FC layer for action classification. 

• Feature fusion and classification: The extracted spatial and temporal features from 

the CNN and RNN are combined and fed into the final classification layer to predict 

the action being performed (including transition states). 
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This strategic integration of CNNs and RNNs within the MotionCRNN framework 

allows for the effective extraction of both spatial and temporal features from the motion image 

sequences. This combined approach contributes to robust and accurate action recognition, 

particularly for identifying transition states between actions. 

 

5.5.2 Experimental Result Analysis 

 In this section, the dataset preparation process, evaluation performance for each process 

on different datasets, analysis of the results, and refining process are described. Furthermore, 

various comparisons are performed to find the optimal solution. 

 

5.5.2.1 Dataset Preparation 

 In the proposed system, trainable DL algorithms played a pivotal role in the 

implementation, encompassing the fusion of YOLOv5-SAM for person detection and 

segmentation, as well as EfficientNet and GRU for MotionCRNN-based action recognition. 

Diverse datasets were carefully prepared to facilitate the training of these algorithms. For the 

experiment, data from all three rooms of the care center were used firstly, emphasizing the 

inclusion of a varied dataset. Dataset preparation involves the standard practice of splitting data 

into training, validation, and testing datasets. Importantly, the data used for each dataset did 

not overlap, thereby ensuring that the data used for training were distinct from those included 

in the validation and testing datasets. Specific datasets for each stage of the process are 

described in detail in the following sections. 

 

5.5.2.2 Training and Validation Datasets 

 For action recognition, multiple sequences of five consecutive images each were 

selected to train the MotionCRNN. These short sequences were collected from the three rooms 

to ensure a balanced dataset. In total, 13,600 sequences were chosen, with 70% (9,520 

sequences) designated for training, and the remaining 30% (4,080 sequences) assigned to the 

validation dataset. These datasets were selected and organized to include diverse situations and 

ensure robust training of the respective algorithms.  

 The proposed system utilized the EfficientNetB4 pre-trained weight for CNN transfer 

learning and employed unidirectional GRUs for recurrent decision-making. In training the 

MotionCRNN, the cross-entropy loss function was calculated once every epoch for the CNN-

RNN integration output, and the Adam optimizer was applied with the default learning rate 
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(0.001). The model was trained for 20 epochs with a batch size of 64. The performance 

evaluation of the training and validation datasets are presented in Table 5.11. The confusion 

matrix for each dataset is shown in Fig. 5.20. Emphasizing the transition state class, it is evident 

that the training process performed well, achieving over 99% accuracy for all evaluation 

metrics on both the training and validation datasets. However, some false and missing 

predictions persisted as can be seen in the confusion matrices, indicating areas for potential 

improvement, despite the overall strong performance in training for recognizing transition 

states. 

Table 5.11. Performance Evaluation on Training and Validation Datasets 

Metric Dataset 
Action 

Transition Seated Standing Sitting Lying 

A
cc
u
ra
cy

 

(%
) Training 99.60 99.96 99.83 99.94 99.85 

Validation 99.41 99.90 99.71 99.85 99.95 

P
re
ci
si
o
n
 

(%
) Training 99.89 99.66 98.92 99.75 98.84 

Validation 99.70 99.22 98.26 99.41 99.61 

R
ec
al
l 

(%
) Training 99.31 100.0 99.75 99.75 100.0 

Validation 99.12 100.0 99.41 99.41 100.0 

F
1
-s
co
re
  

(%
) Training 99.60 99.83 99.33 99.75 99.42 

Validation 99.41 99.61 98.83 99.41 99.80 

 

 

Fig. 5.20. Confusion Matrix for Training and Validation Datasets 

MotionCRNN Training Dataset MotionCRNN Validation Dataset
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5.5.2.3 Testing Dataset 

 The proposed algorithm was tested on the recorded datasets described in Table 3.2. 

However, because of the time-consuming and intensive nature of the ground-truth labeling task, 

only one 15-hour duration (approximately) random long sequence from each room was selected 

for performance evaluation. The sequences comprised up to 54,800 frames at 1fps and were 

recorded during both the daytime and nighttime. Detailed information on the selected testing 

data is presented in Table 5.12, where the actions included in each sequence are also described. 

Specifically, these testing data were selected to include the significant transition states observed 

in each room. For example, the Room 1 sequence highlighted transition states from seated in 

the wheelchair to standing and vice versa, whereas the Room 2 sequence covered a 

considerable number of transition states from sitting to lying down and vice versa. Finally, the 

Room 3 sequence mostly featured transition states from sitting to standing and vice versa, 

which are actions frequently performed by elderly residents. Reminding of the approach, a 

sliding window method was employed with a window size of 5 and a stride of 1 to process the 

long sequence. 

Table 5.12. Testing Dataset Information 

Room 

ID 

Date and Time 
Duration 

Number of 

Frames 
Included Action * 

Start Time End Time 

1 
2019/10/12 

10:15:00 

2019/10/13 

00:39:00 
14 hr 24 min 51,840 A, L, O, Se, St, Tr 

2 
2019/10/25 

11:50:00 

2019/10/26 

02:50:00 
15 hr 54,000 A, L, O, Se, Si, Tr 

3 
2019/10/12 

11:10:00 

2019/10/13 

01:34:00 
14 hr 24 min 51,840 A, L, O, Se, Si, Tr 

*A: Assistance, L: Lying, O: Outside, Se: Seated, St: Standing, Si: Sitting, Tr: Transition states 

 

 A visual representation of a sample 10-minute duration action recognition result from 

the Room 1 testing sequence is illustrated in Fig. 5.21, in which the top one is the scatter plot 

and the bottom two are the bar chart representations of ground truth and predictions across each 

time frame. By observing the visualization in this sample result, it can be seen that the person 

was in a transition state between standing and seated in the wheelchair frequently within the 

10-minute duration. However, some results indicate the presence of over-segmentation errors, 

particularly during the transition state, as represented by the red color in Fig. 5.21. This issue 

arises because the model relies on Top-1 accuracy, assigning the most probable action for each 
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prediction. To address this problem, a sequential-based majority voting decision and condition 

reasoning for transition states were implemented. 

 

Fig. 5.21. Visual Representation of a Sample Action Recognition Result 

  

 To implement the majority voting decision, Top-2 predicted labels were utilized, where 

“Top-2” refers to the two most probable predictions among the five prediction probabilities 

from the model. An illustration of the majority-voting decision is shown in Fig. 5.22. For 

instance, in Fig. 5.22 (a), to determine the predicted label for Segment-167 (bottom graph), the 

previous two segments (Segments 166 and 165) were considered, and the Top-2 predicted 

labels for each segment were checked. The small probability values were then removed using 

a threshold of 20 and the remaining probability values and labels were examined. In this 

example, two labels were identified as “lying” and one label as a “transition state.” Hence, the 

most frequent action was determined as “lying” for Segment-167. It is evident that the ground-

truth label was “lying,” and the majority voting decision also indicated “lying,” which achieved 

a better result than the Top-1 label, which was a “transition state.” However, there were 

conditions in which the thresholded values resulted in the same number of labels, as shown in 

Fig. 5.22 (b). In such cases, the average probability values for each label were obtained and 

the decision was determined as the label with the highest average probability value. For this 

example, the “seated” label has the highest probability of 50.53%. Hence, even though the Top-

1 label was a “transition state,” majority voting correctly identified the action as “seated.” 

over-segmentation errors
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(b) Decision for Segment-403 

Fig. 5.22. Illustration of Majority Voting Decisions 

In this experiment, a transition state was generally defined as a state that changes from 

one action to another. However, even after applying majority voting, there were instances of 

false predictions as transition states throughout the long sequence. This problem occurred 

because of the model’s lack of reasoning capabilities. Applying reasoning to the predictions of 

DL models is crucial for real-world effectiveness. Hence, to enhance the recognition results, a 

reasoning step was introduced that specified that a transition state should not occur between 

the same specific actions. In cases in which this condition occurred, the system refined the 

results after a certain period (1 hour in this experiment) by replacing the predicted transition 
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states with specific actions before or after the transition state. This approach aimed to improve 

the accuracy and reliability of the recognition results by integrating conditional reasoning into 

the prediction process.  

A comparison between the Top-1 and the final refined results is shown in Fig. 5.23. 

Upon checking the visualization, it is evident that the two refined approaches (sequential-based 

majority voting and transition state reasoning) smoothened the action recognition results and 

reduced the over-segmentation errors among the predicted actions. By examining the resulting 

visualization, users can make decisions regarding the actions of their intended residents 

regarding health monitoring. An example of decision-making for the results in Fig. 5.23 could 

be: “Resident A is observed standing for a while, then transitioning to being seated in the 

wheelchair within 10 minutes. During this period, there are frequent transitions between seated 

and standing positions.” Such insights allow caregivers to understand residents’ activities over 

time, facilitating informed decision-making and appropriate interventions, as needed. 

 

Fig. 5.23. Visualization of Action Recognition with Refinements 

 The action recognition performance on the evaluation metrics and confusion matrix 

after the refinements are shown in Table 5.13 and Fig. 5.24. In all testing sequences, the 

“outside” state was included, which is easy to identify even after person detection. Therefore, 

the evaluation was performed after excluding the “outside” state; however, it was included in 

the confusion matrix. In all three testing sequences, although the performance was promising, 

there was still some confusion between the actions. According to the result analysis, some false 

recognition cases were identified, primarily attributed to occlusion, low-quality segmented 

person masks, and misalignment of the transition states.  

• Occlusion: When an elderly resident is blocked from the camera view by a nurse or 

caregiver, the system only detects the caregiver and predicts their actions instead. This 

leads to false detections between “assistance” and other actions due to the person 

detection model mistaking the situation for a single person. 
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• Inaccurate person masks: Confusion between specific actions (seated in the 

wheelchair, sitting, standing, and lying down) occurred because of the inaccuracy of 

the extracted person masks segmented from the person segmentation process.  

• Misaligned transition states: Discrepancies between the ground truth labels for 

transition states and the model’s predictions can occur. This misalignment can result in 

predicted transitions appearing at different times compared to the actual events. 

These challenges contribute to lower precision and recall values in the evaluation metrics. 

Table 5.14 highlights the results after refinements, specifically focusing on transition 

state recognition and excluding the “outside” state. Although there are still some areas for 

improvement, the experimental results are promising, highlighting the key contribution of this 

study. MotionCRNN with result refinement achieved an average accuracy of 99.19% and an 

average F1-score of 83.39%, demonstrating its effectiveness in differentiating transition states 

from other specific actions. 

Table 5.13. Performance Evaluation on Testing Dataset 

Metric 
Room 

ID 

Action Average 

(%) Transition Seated Standing Sitting Lying Assistance 

A
cc
u
ra
cy

 

(%
) 

1 98.02 98.85 99.13 - 99.82 99.77 99.12 

2 99.66 99.92 - 99.88 99.78 99.78 99.80 

3 99.89 99.99 - 99.98 99.95 99.93 99.95 

P
re
ci
si
o
n
  

(%
) 

1 78.97 97.22 94.02 - 99.89 98.55 93.73 

2 84.17 94.64 - 97.66 99.82 97.25 94.71 

3 70.27 88.24 - 99.22 99.97 100.0 91.54 

R
ec
al
l 

(%
) 

1 88.91 88.83 96.11 - 99.87 90.47 92.84 

2 88.98 79.10 - 97.27 99.94 90.69 91.20 

3 92.86 100.0 - 95.52 99.98 89.81 95.63 

F
1
-s
co
re
  

(%
) 

1 83.65 92.84 95.05 - 99.88 94.34 93.15 

2 86.51 86.18 - 97.46 99.88 93.86 92.78 

3 80.00 93.75 - 97.33 99.97 94.63 93.14 
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(a) Room 1     (b) Room 2 

 

(c) Room 3 

Fig. 5.24. Confusion Matrix for Testing Sequences 

 

Table 5.14. Transition State Recognition Performance 

Action 
Room 

ID 

Evaluation Metrics (%) 

Accuracy Precision Recall F1-score 

T
ra
n
si
ti
o
n

 1 98.02 78.97 88.91 83.65 

2 99.66 84.17 88.98 86.51 

3 99.89 70.27 92.86 80.00 

Avg 99.19 77.80 90.25 83.39 

 

MotionCRNN Testing Dataset (Room 1)

Predicted Label

A L O Se St Tr

A

L

O

Se

St

Tr

T
ru

e 
L

ab
el

MotionCRNN Testing Dataset (Room 2)

A

L

O

Se

St

Tr

T
ru

e 
L

ab
el

Si

Predicted Label

A L O Se St TrSi

MotionCRNN Testing Dataset (Room 3)

A

L

O

Se

St

Tr

T
ru

e 
L

ab
el

Si

Predicted Label

A L O Se St TrSi

A: Assistance, L: Lying, 

O: Outside, Se: Seated, 

Si: Sitting, St: Standing, 

Tr: Transition State



 

 

74 

 

5.5.2.4 Comparison of Experiments 

 To comprehensively evaluate the MotionCRNN model’s performance, various 

comparative experiments were conducted, exploring the impact of different factors. The 

following subsections will detail the results of these comparisons. 

 

5.5.2.4.1 Impact of Refinement on Action Recognition 

 Table 5.15 compares the overall recognition performance, particularly for transition 

states, before and after incorporating various refinements. These refinements include bounding 

box recovery, majority voting, and reasoning for transition states. The results indicate that 

while the recall rate for all three rooms decreased slightly, improvements in precision and F1-

score rates were evident, especially in Rooms 2 and 3, where they increased by up to 65.98% 

compared with the results before refinements. Among the refinement processes, conditional 

reasoning for transition states had the most significant impact on increased recognition rates. 

Table 5.15. Impact of Refinements on Transition State Recognition 

Metric Room ID 
Transition State Recognition 

Before Refinement After Refinement Impact 

P
re
ci
si
o
n
  

(%
) 

1 65.26 78.97 +13.71 

2 18.19 84.17 +65.98 

3 14.83 70.27 +55.44 

R
ec
al
l 

(%
) 

1 92.05 88.91 -3.14 

2 91.84 88.98 -2.86 

3 97.62 92.86 -4.76 

F
1
-s
co
re
  

(%
) 

1 76.37 83.64 +7.27 

2 30.36 86.51 +56.15 

3 25.75 80.00 +54.25 

 

5.5.2.4.2 Processing Time Analysis 

 The testing process achieved real-time performance (processing time less than video 

duration) for 1-hour video sequences captured at 1fps. This efficiency is maintained even with 

initial depth data processing and colorization. While increasing the frame rate to 2.5fps resulted 

in a processing time of 1.5 hours, no significant improvement in accuracy was observed. This 

suggests that the 1fps frame rate offers a good balance between processing speed and accuracy 

for real-time applications. 
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5.5.2.4.3 CNN Base Model Comparison 

 Furthermore, various EfficientNet architectures were tested to determine whether the 

model could be enhanced by changing its base model. Four model variants were used for 

comparison: one EfficientNetB4 and three EfficientNetV2 models [87] (V2L, V2M, and V2S), 

which were tested in three testing rooms. A comparison of the overall accuracy and processing 

time of each variant is presented in Table 5.16, where the accuracy was calculated for all 

classes with and without including the “outside”. Average processing time is based on a 1-hour 

duration sequence.  

 The results indicate that while there were no significant differences in overall accuracy 

between the models, processing time varied considerably. EfficientNetB4 offered the best 

balance between accuracy and processing efficiency. For example, on the Room 1 dataset, 

EfficientNetB4 processed a 1-hour sequence in an average of 28.14 minutes. 

 These findings suggest that while alternative EfficientNet architectures may not 

significantly impact accuracy, they can influence processing time. This highlights the 

importance of considering the trade-off between accuracy and computational efficiency when 

selecting a CNN model for real-time applications. 

 

Table 5.16. Overall Accuracy and Processing Time Comparison (EfficientNet Variants) 

EfficientNet 

Model 

Room 

ID 

Overall Accuracy (%) Average Processing 

Time All Classes Excluding “Outside” 

B4 

1 99.04 97.79 28 min 

2 99.35 99.51 28 min 

3 99.86 99.88 28 min 

V2L 

1 98.67 96.85 37 min 

2 99.20 99.29 37 min 

3 99.90 99.88 37 min 

V2M 

1 98.59 96.73 34 min 

2 99.10 99.17 33 min 

3 99.90 99.88 30 min 

V2S 

1 98.84 97.32 29 min 

2 99.26 99.37 29 min 

3 99.89 99.87 29 min 
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5.5.2.4.4 System Comparison 

 The proposed MotionCRNN model was evaluated against related works for recognizing 

the daily activities of elderly individuals. While all these systems share the same goal, they 

utilize different technologies, data types, and recognition models. Table 5.17 presents a 

comparison of the proposed system with recent studies employing distinct methodologies. Key 

factors considered include: 

• Input data type: This highlights whether the system uses depth data or other modalities 

like RGB images or wearable sensors. 

• Real-world data: This indicates if the system was evaluated on real-world datasets 

captured in practical settings or public datasets. 

• Transition state recognition: This emphasizes whether the system recognizes 

transitions between activities, which is crucial for elderly monitoring. 

• Recognition model architecture: This specifies the type of model used for activity 

recognition. 

• Privacy preservation: This highlights how the system addresses privacy concerns, 

such as using depth data which avoids capturing personal details. 

 

The comparison results indicate that the proposed MotionCRNN achieved an average 

accuracy of 99.42% for recognizing seven actions, outperforming the previous (SVM + HMM) 

method which has a recognition rate of 84.04%. Both are tested on three elderly datasets from 

the care center. This approach prioritized both privacy by utilizing depth data and real-world 

reliability through the use of real-world data, which is one of the contributions of this work. In 

addition, it captured the crucial transition states vital for elderly monitoring.  

While another sensor-based approach achieved transition-aware recognition [52], its 

accuracy was limited to 80%. Notably, while state-of-the-art hybrid DL recognition models 

[30], [70], [71] obtained high accuracy, they were not considered for the application with real-

time processing, privacy concerns, or transition state recognition. However, it is remarkable 

that although most of the other systems used public datasets, this study used custom real data; 

thus, this difference in data sources can influence the reported accuracy levels. 
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Table 5.17. 

(a) System Comparison - 1 

Related Work (Year) Data Type Real Data Total Action 
Transition 

Awareness 

[30] (2023) Sensor ✘ 6 ✘ 

[52] (2020) Sensor ✔ 9 ✔ 

[70] (2023) RGB ✘ 101 ✘ 

[71] (2020) RGBD ✘ 27 ✘ 

Proposed Method Depth ✔ 7 ✔ 

(b) System Comparison - 2 

Related Work (Year) 
Recognition 

Model 
Real-Time 

Privacy-

Preserving 

Average 

Accuracy (%) 

[30] (2023) CNN-LSTM N/A ✘ 99.00 

[52] (2020) STD-TA N/A ✘ 80.00 

[70] (2023) Vit-ReT ✔ ✘ 94.70 

[71] (2020) Deep CNN N/A ✔ 87.21 

Proposed Method 

SVM + HMM 

✔ ✔ 
84.04 

MotionCRNN 99.42 

 

5.5.2.4.5 Extended Testing on Different Datasets 

 To assess the model’s ability to adapt to different environments, it was tested on data 

from a hospital setting. This environment featured significantly different camera positions and 

structures compared to the care center used for training. Three elderly datasets from the hospital 

are used for evaluation. While a smaller dataset of 600 new sequences was used for initial 

action recognition training, transfer learning enabled the effective evaluation of three 1-hour 

testing sequences (3,600 frames each) from the new environment. The results presented in 

Table 5.18, ranging from 84.83% to 99.22% overall accuracy rates, demonstrate the potential 

of the system as a foundational model that can adapt to diverse settings with minimal additional 

data requirements. This highlights another key strength of this study. 
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Table 5.18. Performance Evaluation on Extended Dataset 

Room ID 
Date and Time 

Included Action * Overall Accuracy (%) 
Start Time End Time 

4 
2024/01/06 

10:45:00 

2024/01/06 

11:45:00 
A, L, St, Tr 99.22 

5 
2024/01/27 

07:02:00 

2024/01/27 

08:02:00 
A, L, St, Si, Tr 84.83 

6 
2024/01/31 

19:56:00 

2024/01/31 

20:56:00 
A, L, O, Si, Tr 94.89 

* A: Assistance, L: Lying, O: Outside, St: Standing, Si: Sitting, Tr: Transition states 
 

5.5.2.4.6 Discussion  

A unique contribution of this experiment is the application of MotionCRNN to image 

sequences for action recognition. This approach incorporated motion information into a hybrid 

CNN-RNN architecture, which is valuable for identifying transition states that rely heavily on 

movement patterns. The system achieved a high accuracy of 99.42% in recognizing not only 

the transition states but also various specific actions in real time. Through experimentation, the 

model architecture and parameters were optimized, further refining the results with sequential-

based majority voting, and condition reasoning to enhance action recognition performance. 

 

5.6 Graphical User Interface (GUI) 

 A GUI specifically designed for end users, including family members and health 

caregivers, was developed to facilitate the real-time monitoring of elderly individuals and 

access detailed action information captured by the proposed action recognition system. The 

GUI consisted of two main windows, as shown in Fig. 5.25. The first window is the action 

detail window, where users can select the name or ID of the elderly resident they wish to 

monitor and input the desired start and end times to view the detailed information. The GUI 

then displays the recognized actions of the selected resident on a scatter plot, providing a 

second-by-second representation. Additionally, a bar chart summarizes the actions performed 

during the specified time frame. For a more comprehensive view of continuous actions, users 

can refer to a table that lists the specific durations of the consecutive actions. The GUI design 

ensures that end users and healthcare providers can easily access insightful information within 

a single window. 
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The second window in the GUI is a real-time monitoring window. Similar to the action 

detail window, users can input relevant information to either re-play or monitor the actions of 

elderly residents in real time. This feature allows users to validate the accuracy of previously 

captured action details, thereby providing reassurance and confidence in the system’s 

performance. In summary, this GUI serves as a comprehensive tool for caregivers to monitor 

the elderly in real time, access detailed action information, and interact with the analytics and 

recognition processes of the system. 

 

(a) Action Details Window 

 

(b) Real-time Monitoring Window 

Fig. 5.25. Graphical User Interface 
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5.7 Conclusion 

This chapter explored various approaches for action recognition in the context of 

elderly monitoring. Three main approaches were investigated: 

• HOG features-based approach (SVM, HMM + ML): This traditional approach relies 

on hand-crafted features like HOG to represent the sequence of data. While these 

methods can achieve reasonable accuracy, especially the (SVM + HMM) method, they 

require significant domain knowledge for feature extraction and may struggle to capture 

complex temporal dynamics within activities. 

• Temporal features-based approach (SVM with motion information): This approach 

utilizes SVM to classify temporal features derived from body posture changes. These 

features capture motion information but cannot learn complex relationships between 

consecutive frames. This limitation can hinder the recognition of transition states. 

• Spatiotemporal features-based approach (MotionCRNN): This approach leverages 

DL architectures like CNN and RNN to automatically learn spatiotemporal features 

from the sequence of data. The proposed MotionCRNN model integrates the motion 

information with a CNN for spatial feature extraction and an RNN for capturing 

temporal dependencies between consecutive frames.  

To conclude, the MotionCRNN model offers a robust and generalizable solution for 

action recognition in elderly monitoring applications. By combining DL with well-designed 

refinements (sequential-based majority voting and transition state reasoning), MotionCRNN 

effectively recognizes not only primitive actions but also critical transition states, providing 

valuable insights for caregivers. The system’s focus on privacy and real-time processing further 

strengthens its potential for real-world deployment. 

Finally, a user-friendly GUI was designed to provide a platform for offline interaction 

between caregivers and the system, offering insights into the health trends and details of the 

activities of the elderly. 
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Chapter 6 
 
 
 

Overall Conclusion and Future Research 

   

 
 

 

This chapter concludes the exploration of action recognition for elderly 

monitoring. The research objectives outlined in Chapter 1 will be 

recalled and the key findings of the proposed system will be 

summarized. This chapter will discuss the overall effectiveness of the 

system in real-world scenarios, highlighting its strengths and potential 

limitations. Finally, the potential contributions of this research to the 

field of elderly care technology will be explored and promising 

directions for future research will be outlined. 
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6.1 Research Summary and Realization 
 This research aimed to develop a comprehensive activity monitoring and behavior 

analysis system to support the well-being of elderly individuals and reduce the burden on 

caregivers. It achieved this goal by leveraging cutting-edge technologies such as Deep 

Learning (DL), advanced Computer Vision (CV), Hidden Markov Model (HMM), and 

sequential analysis. The system prioritizes user privacy by utilizing stereo depth cameras, 

ensuring real-time monitoring without capturing personal details. To enhance its 

effectiveness, the research focused on the following key contributions: 

(1) Depth cameras for elderly monitoring: This research explored the application of 

stereo depth cameras for real-time action recognition in indoor environments, 

prioritizing privacy preservation. 

(2) Transition state recognition: We investigated various approaches using 

spatiotemporal features to achieve robust recognition of critical transition states 

between daily activities, offering valuable insights into residents’ behavior patterns. 

(3) Hybrid HMM combinations: The research investigated the effectiveness of 

combining HMMs with Machine Learning (ML) models for real-time action 

classification. The optimal hybrid (SVM + HMM) achieved an average accuracy of 

84.14% for recognizing actions from three elderly datasets of the care center. 

(4) Convolutional Recurrent Neural Network (CRNN) integrations: Leveraging 

CRNN in conjunction with motion information derived from body posture changes, 

the system achieves robust recognition of transition states. The proposed 

MotionCRNN model achieved an average accuracy of 99.42% for recognizing seven 

actions, including transition states. Moreover, it yielded a remarkable F1-score of 

83.39% for transition state recognition, demonstrating its effectiveness in capturing 

these crucial moments. Compared to the (SVM + HMM) approach, the CRNN model 

achieved significantly higher accuracy. 

(5) Real-world validation: Extensive testing with real-world data collected from elderly 

facilities (care center and hospital) validates the system’s reliability and 

generalizability, demonstrating its effectiveness in real-world settings. 

By fulfilling the objectives and delivering key contributions, this research provides a 

significant advancement in the field of elderly care technology. The proposed system offers 



 

83 

 

real-time activity monitoring, facilitates early detection of potential health concerns, and 

empowers caregivers with valuable insights into resident behavior.  

Overall, this system can aid elderly individuals to age safely, facilitating smarter 

living with the help of Artificial Intelligence (AI). Additionally, it can be deployed in smart 

care centers for remote monitoring and access to health details through a user-friendly 

Graphical User Interface (GUI), promoting independent living, and assisting caregivers. 

Furthermore, the effective recognition of specific actions and transition states can provide 

valuable insights into the well-being of the elderly, aiding in the early detection of potential 

health issues related to mobility and balance. It is important to recognize that modern 

technology can benefit all generations. By educating and assisting the elderly in using smart 

devices and tools, they can be empowered to experience independent living and smarter aging, 

especially as the elderly population continues to grow. 

 

6.2 Limitations 

 While this study demonstrates the effectiveness of the proposed system for elderly 

activity monitoring, there are still some limitations. The first one is the trade-off between 

image quality and processing speed. The system utilizes depth images with a resolution of 

320×180 pixels to achieve a balance between image detail, storage efficiency, and real-time 

processing. Higher resolutions offer more detail but could impact processing speed. Future 

research could explore techniques for optimizing image compression or utilizing more 

powerful hardware to enable higher resolutions without sacrificing real-time performance. 

 The second one is the potential for improved person detection and segmentation. In this 

study, person detection and segmentation using You Only Look Once (YOLOv5) and 

Segment Anything Model (SAM) models form the foundation of the system. While achieving 

promising results, the accuracy of these processes can be further enhanced. Exploring newer 

YOLO versions or alternative segmentation algorithms could lead to improved detection and 

segmentation accuracy, potentially leading to better action recognition performance. 

 The third one is related to the camera-to-person distance and generalizability. The 

current system converts depth images to colorized images for compatibility with RGB-based 

object detectors. However, achieving optimal performance depends on maintaining a specific 

camera-to-person distance consistent with the training data. Significant deviations from this 

distance can lead to detection errors. Future research can investigate leveraging 3D 
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processing techniques that directly utilize depth information for person detection. This 

approach eliminates dependence on colorization and enables distance-based detection, 

potentially improving generalization and robustness in various environments. 

 Finally, the current system is optimized for single-resident scenarios. In multi-person 

settings, person tracking is crucial to handle occlusion and identify individual activities 

accurately. Future research should explore incorporating person tracking algorithms to enable 

robust monitoring in environments with multiple residents. 

6.3 Future Research 

 Current research has established a robust framework for recognizing the daily activities 

and transition states of elderly residents. This makes the way for exciting future directions as 

shown in Fig. 6.1. 

(1) Integration with Cloud Computing and Big Data Analysis 

(a) Resident profiling: Integrate the system with cloud computing to automatically 

generate resident profiles based on recognized activities. 

(b) Activity analysis: Leverage big data computing to analyze daily activity dairies and 

sleep patterns extracted from hourly or daily data. 

(c) Predictive analytics: Employ ML and AI to predict health trends and wellness for 

individuals and groups based on the generated resident profiles. 

(d) Alerting system: Develop an alerting system to flag potential health concerns like 

falls, extended sleep durations, or frequent bathroom visits. 

(2) Real-world deployment and scalability 

(a) Camera streaming integration: Test the system’s functionality with camera 

streaming in real-world settings like hospitals, care centers, and smart homes. 

(b) Edge computing deployment: Investigate modifying the model for deployment on 

edge devices with limited computational resources such as Mini PCs or Raspberry 

Pi computers. This would enable on-device processing and reduce reliance on cloud 

infrastructure. 

These future directions could significantly enhance the system’s capabilities, 

transforming it from a monitoring tool to a comprehensive platform for proactive care and 

health management. By integrating big data analysis and predictive models, the system can 

empower caregivers and healthcare professionals to detect potential health issues and take 

action early, ultimately improving the quality of life for elderly populations. 
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Fig. 6.1. Future Research 
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