

Intelligent Small-Scale Strawberry Irrigation System for Different Weather Conditions

(Defense Seminar)

Ye Htet (ME.EcE-4) Master of Engineering Faculty of Electronic Engineering

<u>Supervisor</u> Dr. Htin Kyaw Oo External Examiner Dr. Tin Tin Hla

<u>Co-Supervisor</u> Dr. Theint Theint Soe <u>Member</u> Daw Hnin Pwint Phyu

September 18, 2019

Introduction

- > To overcome these problems, technology is one of the best solutions.
- > People in agriculture need agricultural knowledge to make precise decisions.
- Efficient water and fertilizers usage for strawberry plants to bear fruits all the year round in Pyin Oo Lwin.

Research Questions

• Why strawberry plants can't bear and produce fruits in all seasons?

• How to grow strawberry plants in different regions?

precise temperature, water and fertilizer management

Research Methods

Using modern technology to bear fruits all the year round.

Classifies plant leaves by using image processing.

Using automatic drip irrigation system to water and feed fertilizers.

Outline of Presentation

Introduction

Research Methods

Overall Block Diagrams

Small-scale Farm Structure and Design

Nutrient Deficiency Symptoms Detection System

 $\overleftarrow{}$

Drip Irrigation System

Temperature Control System

Discussion

Image Processing Steps

7

Nutrient deficiency symptoms detection (NPK)

Leaf's size calculation

[5]

[5]

[5]

Drip Irrigation System

Small-scale Farm Structure and Design

Setting Devices in the Farm

Processes	Requirements	
Camera Setting	Logitech C310 Webcam	
Drip Kits Setting	DC Pump, Solenoid valve, 24V Power Supply, Offtake with rubber, LDPE pipe, Male Thread Adaptor, 12 Mil Dripline, Flushing Valve	
Temperature Sensor Setting	DHT22, Raspberry Pi 3, Real Time Clock	

Camera Setting

Camera A Camera B Camera C

(a) Offtake with rubber, (b) LDPE pipe, (c) Male thread adaptor,(d) 12 mil dripline, (e) Flushing valve

c d e

Drip pipes are placed beside the plants around root zones.

Temperature and Humidity Sensor Setting

- The RPi, DHT22 and RTC are installed.
- The temperature and humidity data are logged in the memory stick.

Processes	Requirements	
Leaf Size Calculation	Some Mathematical Calculations and OpenCV	
NPK Detection System	Image Acquisition, Image Pre-processing, Image Segmentation, Feature Extraction, Image Classification, and their appropriate methods	
Fertigation (Fertilizer + Drip Irrigation)	Nutrient Solutions for Nitrogen, Phosphorus and Potassium	

Image processing techniques

- Conversion of RGB to GRAY
- Morphological Operations
 - Erosion (erodes away boundries of foreground object)
 - Dilation (adds an extra layer of pixels to foreground)
 - Opening (removing noise)
 - Closing (closing small holes inside foreground object)
- Otsu's Thresholding
- **Pyramid Mean Shift Filtering** (to help accuracy of thresholding step)
- Gaussian Blurring (to reduce noise and details in image)
- Canny Edge Detection
- Watershed Segmentation

Python Libraries

- OpenCV
- Matplotlib
- o Numpy
- o Scipy
- Pandas
- Scikit-learn

How to calculate leaf size?

- Use OpenCV and Python and some mathematical calculation.
- To measure the size of the leaf with OpenCV, a reference object is needed.
- Measures the number of pixels per metric from reference object and then determines the size of leaf.
- Pixels_per_metric = Object_width(measured in pixels) / known_width(measured in metric)
- Dimension of leaf = leaf_width / Pixels_per_metric
 - o Known_width = 2cm
 - o Object_width = 150 pixels

Pixels_per_metric = 150 pixels / 2cm = 75 pixels per cm

 \circ Leaf_width = 600 pixels

Dimension of leaf = 600 pixels / 75 pixels per cm = 8cm

Capture by webcam

> Load the image

Morphology (Opening + Closing)

Color-space conversion and Range detection, Blurring, Thresholding, Morphological operation

Watershed Segmentation

- > A classic algorithm used for segmentation.
- ≻Useful when extracting *touching* or *overlapping* objects.
- ≻Able to detect and extract each leaf.

Feature extraction

The images can be described as -

- Spatial (locations, spatial information, etc..)
- Color (RGB, HSV, YCrCb, etc..)
- Texture (rough or smooth, vertical or horizontal, etc..)
- To encode all this information is to apply feature extraction to quantify the contents of an image.
 - ✓ Taking an input image
 - ✓ Applying an algorithm
 - ✓ Obtaining a feature vector (i.e: a list of numbers) that quantifies images.

Testing Phase

Texture Features

-----Texture Based Features-----Contrast: 188.19458936630895 Correlation: 0.9710364964904895 Inverse_diff_moments: 0.9405118163736426 Entropy: 4.037106722797929

Image Classification

- The task of assigning a label to an image from a predefined set of categories.
- To analyze an input image and return a label that categorizes the image. •
- The labels are always from a predefines set of possible categories.

Supervised or Unsupervised?

26

K-deficiency

Types of Learning

- Supervised learning the dataset is the collection of labeled examples and has the knowledge of output.
- Unsupervised learning the dataset is the collection of unlabeled examples and has no knowledge of output.

Spot-Check

- 1. K-Nearest Neighbours (kNN)
- 2. Naïve_Bayes
- 3. Support Vector Machine (SVM)
- 4. Decision Tree
- 5. Logistic Regression

Kernel, C, Gamma

Multiclass SVM

- Multiclass classification means a classification task with more than two classes.
- Each sample is assigned to one and only one label.
- SVM is able to classify only binary data, need to convert the multi-dimensional dataset into binary form using:

- a. One vs Rest
- b. One vs One

	 Constructs one classifier per class.
One vs Rest	 For each classifier, the class is fitted against all the other classes.
	 Requires to fit only n_classes classifiers.

	• Constructs one classifier per pair of classes.
One vs One	• Requires to fit (n_classes * (n_classes - 1) / 2) classifiers.

From the full dataset, construct three binary classifiers, one for each class

Non-linear SVM

Types of kernels [6]

- ≻ Linear kernel
- Polynomial kernel
- Radial basis function kernel (RBF)/ Gaussian Kernel

SVC with polynomial (degree 3) kernel

scikit-learn documentation

SVC with RBF kernel

SVM PARAMETERS

• Parameters are arguments that are passed when the classifier is created.

C:

- Controls the trade off between *smooth decision boundary* and *classifying training points correctly*.
- Small C \rightarrow misclassification low ("soft margin").
- Large C \rightarrow misclassification high ('hard margin").

Gamma(used for RBF kernel and SIGMOID kernel):

- Defines how far the influence of a single training example reaches.
- Small Gamma \rightarrow every point has a far reach.
- Large Gamma \rightarrow every point has close reach.

The goal is to find the balance between "not too strict" and "not too loose".

GridSearchCV method

Test and Results (Training and Parameter Tuning) 35

	Total Samples	Training Set (80%)	Test Set (20%)
Healthy	261	209	52
Nitrogen	87	70	17
Phosphorus	66	53	13
Potassium	227	182	45

• **Training set** — a subset to train a model.

• **Test set** — a subset to test the trained model.

Kernel	С	Gamma
RBF	0.001,0.01,0.1,10,25,50,100,1000	1e-2, 1e-3, 1e-4, 1e-5
SIGMOID	0.001,0.01,0.1,10,25,50,100,1000	1e-2, 1e-3, 1e-4, 1e-5
LINEAR	0.001,0.01,0.1,10,25,50,100,1000	-

Decision function shape \rightarrow 'OvR' Kernel \rightarrow 'Linear' C \rightarrow 1000

decision_function_shape='ovr' or 'ovo'

Accuracy score: 0.8074534161490683 precision recall f1-score 0.84 0.97 0 1 1.00 0.57 0.79 0.73 2 0.71 0.68 з accuracy

macro avg

weighted avg

Decision function shape \rightarrow Default Kernel \rightarrow Default

Accuracy score: 80.75% Training Set Mean Absolute Error: 50% **Testing Set Mean Absolute Error: 47%**

Accuracy score: 0.9147286821705426			
	precision	recall	f1-score
0	0.95	1.00	0.98
1	1.00	0.76	0.87
2	0.91	0.77	0.83
3	0.83	0.89	0.86
accuracy			0.91
macro avg	0.92	0.86	0.88
weighted avg	0.92	0.91	0.91

0.83

0.81

0.90

0.73

0.76

0.69

0.81

0.77

0.80

0.74

0.81

Decision function shape \rightarrow 'OvR' Kernel \rightarrow 'Linear' $C \rightarrow 1000$

Accuracy score: 91.47% Training Set Mean Absolute Error: 13% **Testing Set Mean Absolute Error: 16%**
Test and Results (Healthy leaves)

	C	lass	Color S	pace	Lower b	oundaries	Upp	per boundaries	Contour Are	a
[He	ealthy	HS	V	[33,	39,61]		[74,255,255]	Greater than 5	00
Test Images	S						S			
Total Detect	ed	1	9		24	22		14	15	12
False Detect	ed	0 (0	0%)	0	(0%)	0 (0%)		0 (0%)	0 (0%)	5 (42%)
Classified Corre	ectly	15 (7	79%)	23	(96%)	20 (91%)		14 (100%)	15 (100%)	3 (25%)
Misclassifie	d	4 (2	1%)	1	(4%)	2 (9%)		0 (0%)	0 (0%)	4 (33%)

- "total detected" number of leaf images detected from the plant image with different backgrounds
- "false detected" number of non-leave images detected
- "classified correctly" number of correctly classified images for appropriate classes
- "misclassified" number of incorrect classified images as other classes.

Test and Results (Nitrogen Deficiency leaves)

Class	Class Color Space Lower boundaries		Upper boundaries	Contour Area
Nitrogen	HSV	[0,173,119]	[37,255,255]	Greater than 500

Test Images						
Total Detected	1	2	4	6	7	6
False Detected	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Classified Correctly	1 (100%)	1 (50%)	4 (100%)	5 (83%)	7 (100%)	3 (50%)
Misclassified	0 (0%)	1 (50%)	0 (0%)	1 (17%)	0 (0%)	3 (50%)

Class	Color Space	Lower boundaries	Upper boundaries	Contour Area
Phosphorus	RGB	[0,0,157]	[146,137,255]	Greater than 500

Test Images						
Total Detected	3	1	3	0	3	3
False Detected	0 (0%)	0 (0%)	0 (0%)	-	0 (0%)	0 (0%)
Classified Correctly	3 (100%)	1 (100%)	3 (100%)	-	3 (100%)	3 (100%)
Misclassified	0 (0%)	0 (0%)	0 (0%)	-	0 (0%)	0 (0%)

Class	Color Space	Lower boundaries	Upper boundaries	Contour Area
Potassium	HSV	[0,0,53]	[57,255,255]	Greater than 500

Test Images						
Total Detected	19	18	14	9	10	30
False Detected	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	4 (13%)
Classified Correctly	3 (16%)	3 (17%)	6 (43%)	3 (33%)	5 (50%)	7 (23%)
Misclassified	16 (84%)	15 (83%)	8 (57%)	6 (67%)	5 (50%)	19 (64%)

Nutrient solutions for Strawberry Plants [5]

Nutrient	Main functions	Fertilizers	Application Rate (L/1000 Plants)
Nitrogen(N)	Growth and yield	Urea (CH ₄ N ₂ O) <46%N>	0.4 – 0.5
Phosphorus(P)	Fruit development	Triple Superphosphate (CaH ₄ P ₂ O ₈) <46%P>	2.5 – 3
Potassium (K)	Fruit quality and flavor	Potassium Chloride (KCl) <60%K>	0.7 – 0.8

41

NPK should be applied carefully to get better yield and fruit quality.

Soluble in water

Fertigation (Fertilizers + Irrigation)

Fertilizers	Application Rate (liter/55 Plants)	Drip Pipe Flow Rate	Supply Duration (minutes/55 plants/2 weeks)
Urea	0.022 – 0.0275		1
Triple Superphosphate	0.1367 – 0.165	1.95 liters per hour	5
Potassium Chloride	0.0385 – 0.044		2

42

> There are three stands in the farm and each stand has 55 plants for five rows.

Drip irrigation System

Processes	Requirements			
Soil Moisture Data Logging	Waveshare Soil Moisture Sensor, ESP8266 D1 Mini Board, SD card, SD card Module, Power bank			
Comparison and Scheduling for Water Supply Duration	Soil Moisture Data from Different Farms			

Soil Moisture Data Logging

- moisture values are required to set to avoid over-watered or under-watered.
- too little moisture \rightarrow plant death.
- too much \rightarrow root disease and wasted water.

Strawberry Farms around POL

Fields	Aung Chan Thar	City Farm-A	City Farm-B	City Farm-C
Growing System	Indoor	Outdoor	Outdoor	Indoor
Farm Structure				
Supply Method	Drip System	Drip System	Drip System	Drip System
Supply Duration	20 minutes (twice a day)	15 minutes (twice a day)	15 minutes (twice a day)	15 minutes (thrice a week)

Soil Moisture Data for Small-scale Farm

- Life Two months old plants
- > Water supply Duration

- 10 minutes (twice a day)

Data logging Time

Before watering (10 min)After watering (10 min)

Soil Moisture Data for Aung-Chan-Thar

- Life Two months old plants
- > Water supply Duration

- 20 minutes (twice a day)

Data logging Time

Before watering (10 min)After watering (10 min)

13.8mm 15.7cm

Soil Moisture Data for City Farm-A

- Life Two months old plants
- > Water supply Duration
- 15 minutes (twice a day)

> Data logging time

Before watering (10 min)After watering (10 min)

Soil Moisture Data for City Farm-B

- Life Two months old plants
- > Water supply Duration
- 15 minutes (twice a day)

> Data logging time

Before watering (10 min)After watering (10 min)

Comparison of Soil Moisture Data and Leaf Size

Fields	Growing System	Moisture		Loof Sizo	
FIEIUS	Growing System	Min	Max		
Small-scale Farm	Indoor	908	948	17.0cm x 17.8cm 🗸	
Aung Chan Thar	Indoor	876	918	13.8cm x 15.7cm 🖌	
City Farm-A	Outdoor	670	907	10.5cm x 9.9cm	
City Farm-B	Outdoor	697	928	9.6cm x 9.6cm	
City Farm-C	Indoor	720	927	13.3cm x 13.7cm 🗸	
Optimal State	Indoor	870	950		

50

***** The larger the leaf area, the more production rate we can get.

Scheduling for Water Supply Duration

Minimum – 870 Maximum – 950 51

Moisture Range	Duration		
870 to 950 (watering)	5 minutes		
950 to 870 (normal)	3 hours		

Schedule		Duration	Drip Pipe Flow Rate	Water Usage	
3 AM	3 PM	5 min			
6 AM	6 PM	5 min	1 95 liters per hour	1 3 liter/plant/day	
9 AM	9 PM	5 min	List month per mouth		
12 AM	12 PM	5 min			

72 liters (19 gallons) per day for all 55 plants

Temperature Control System

Processes	Requirements		
Temperature Data Logging	DHT22, Raspberry Pi 3, Real Time Clock, Memory Stick		
Temperature Controlling	Exhaust Fan, Sprinklers, Cooling Pad		
Scheduling for Auto Temperature Control System	Logged Temperature Data for Each Season		

Inside Temperature from August,2018 to May,2019

Black box – a little amount of fruits because of high temperature

Temperature for hot season

 $\begin{array}{ccc} (20^{\circ}\text{C} \sim 29^{\circ}\text{C}) & \longrightarrow & \text{Set fruits} \\ \text{Less than } 10^{\circ}\text{C} & \longrightarrow & \text{Fail to germinate} \end{array}$

Need to reduce 11 degree Celsius

How to control temperature inside the farm?

Sprinklers

Temperature control inside the farm?

Temperature inside the farm (Cooler Pad + Sprinklers + Fan) 37 12:40:53, 36.7 36.5 2.6°C (36.7°C to 34.1°C) 36 35.5 35 34.5 12:59:01, 34.1 34 33.5 2:36:52 ,3^{:,1,0},3^{:,1,2},0^{*} Temperature

- data logged during rainy season.
- humidity is high (average of 93%), leaf scorch and bacterial blight are affected.
- need to enable good aeration for plants.

- data logged at the start of cold season.
- Temperature is in the range (19°C to 31°C), with the average of 23°C.
- Average humidity is 89%.

Updating Data to ThingSpeak

- Thingspeak takes at least 15 seconds to update data.
- sampling time is set 20 seconds for each.

GUI design

Why is UI design important?

- User interfaces allows end users to interact with application.
- A good UI will make an application intuitive and easy to use.

TkinterwxPythonJPython (Jython)PyKDE / PyQtPyGTKX11WPYWin32all.exe

Tkinter

The Tkinter module ("Tk interface") is the standard Python interface to the Tk GUI toolkit [7].

layered design, accessibility learning, portability, and availability.

Temperature Control Devices

AC	Pump	:	On	
DC	Pump	:	Off	

Graphs	Plant Status		
Temperature	Leaves		
Humidity	Fruits		
 L3			
Overall System	C Water		
System Design	C Nitrogen		
	C Potassium		

Control Panel

Discussion

- \succ Soil moisture sensor's length is only 1.5 inches and cannot sense the root zones deeply.
- Data are recorded from just four farms in Pyin Oo Lwin and the plants may have different soil types, soil mixing ingredients, environmental temperatures, water and fertilizer supply.
- 15 solenoid valves should be used for all 15 plant rows to supply optimal water and fertilizers to only appropriate rows.
- Further testing on the feature extraction and classification algorithm could also be the future tasks.

Discussion (Cont'd)

- Much amount of temperature (at least 11°C) inside the farm is needed to reduce during the hot season in order to set fruits.
- Using a high-resolution camera with motorized camera slider will reduce the cost for multiple camera usage and also increase the robustness.
- > Plants in the middle stand have better effect than other two stands.
 - The leaves are large, more flowers are set and the fruits are bigger.
 - Not directly touched by sunlight (can stay in the shadow).

Conclusion

- > Pyin Oo Lwin is the suitable place for strawberry plants but fruits bear once a year.
- > Plants can reflect weather and soil conditions.
- > Indoor system is more efficient than traditional open fields.
- Drip irrigation saves water and fertilizer ensuring optimal growth in low cost, high reliability and accuracy.

67

Implementation of leaf analysis can effectively monitor plant growth trends and detect nutrient deficiency symptoms.

References

[1] C. Joseph, I. Thirunavuakkarasu, A. Bhaskar, and A. Penujuru, "Automated fertigation system for efficient utilization of fertilizer and water," 2017, pp. 1–6.

- [2] I. Mohanraj, V. Gokul, R. Ezhilarasie, and A. Umamakeswari, "Intelligent drip irrigation and fertigation using wireless sensor networks," 2017, pp. 36–41.
- [3] V. Pooja, R. Das, and V. Kanchana, "Identification of plant leaf diseases using image processing techniques," 2017, pp. 130–133.
- [4] M. V. Latte and S. Shidnal, "Multiple nutrient deficiency detection in paddy leaf images using color and pattern analysis," 2016, pp. 1247–1250.
- [5] "Nutritional Recommendations for Strawberry". Retrieved from http://www.haifagroup.com/
- [6] "Support Vector Machine". Retrieved from https://scikitlearn.org/stable/modules/svm.html#svm/
- [7] B. Dufour, "An Introduction to Python Programming and GUI Design Using Tkinter,".

Aphids Disease

THANK YOU FOR YOUR ATTENTION

Questions?